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1 Oppgave 6.1.3 (b), (e), s. 291, [S]

Solution:

(b): Separation of variables leads to the equation
∫

dy/y =
∫
t2 dt, or log(y) =

t3/3 + C where C is an arbitrary integration constant. Thus y(t) = exp(t3/3 + C),
where C = 0 from the equation y(0) = 1.

(e): Here we get
∫
y2 dy =

∫
1 dt, or y3/3 = t + C, y(t) = (3t + 3C)1/3. Finally

y(0) = 1 and therefore 3C = 1.

2 Oppgave 6.1.4 (a), (b), s. 291, [S]

Solution:

(a): The general solution to the homogeneous system y′ = y is y0(t) = C exp(t),
where C is an arbitrary constant.

Further, a particular solution to the system y′ = t + y can be search in the form
y1(t) = at+ b, from which it follows that a = b = −1.

Thus we can put y(t) = y0(t) + y1(t). The constant C is then determined from the
equation y(0) = 0 and thus y(t) = −t− 1 + exp(t).

(b): Similarly to (a), y0(t) = C exp(−t), y1(t) = t − 1, and as a result y(t) =
t− 1 + exp(−t).

3 Oppgave 6.1.9, s. 292, [S]

Solution:

(a): Here f(t, y) = t - independent from y and thus f is uniformly Lipschitz conti-
nuous with respect to y on [a, b]× (−∞,+∞) with the constant L = 0. Theorem 6.2
then guarantees the existence and uniqueness of solutions on an arbitrary interval.

(b), (c): Here f(t, y) = ±y, which is a linear function with the slope ±1. In either
case f is uniformly Lipschitz continuous with respect to y with constant L = 1 on
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[a, b]× (−∞,+∞), regardless of a, b. Theorem 6.2 then guarantees the existence and
uniqueness of solutions on an arbitrary interval.

(d): Here f(t, y) = −y3, which is continuously differentiable on any interval [α, β].
Thus the function is also uniformly Lipschitz continuous on any finite interval, but
the Lipschitz constant L = maxy∈[α,β] |df/dy| = maxt∈[α,β] |3y2| may vary from one
interval to another. In particular, on [0, 1] the Lipschitz constant is 3. Any ways, in
this situation Theorem 6.2 only guarantees existence and uniqueness of solutions on
some sub-interval [0, c], c > 0.

4 Oppgave 6.1.10, s. 292, [S]

Solution:
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5 Oppgave 6.1.11, s. 292, [S]

Solution:

(a): y(t) = t2/2 + y(0). Theorem 6.3 is clearly verified with L = 0.

(b,c): y(t) = y(0) exp(±t). Theorem 6.3 is verified with L = 1. In fact, in (c) any
non-negative L or even L ≥ −1 is sufficient, but this is of course is not a valid value
for the Lipschitz constant.

(d): If y(0) = 0 we can use the solution y(t) ≡ 0. For y(0) = 1 we can use separation
of variables to find that y(t) = (2t+C)−1/2, where 1 = y(0) = C−1/2. Note that the

16. februar 2016 Side 2 av 6



ving 4

difference between the two solutions decreases with time, and therefore the estimate
of Theorem 6.3 holds with any L ≥ 0 in this case.

6 Oppgave 6.2.2, s. 302, [S]

Solution:

(a):

t_i y_i

0.000000e+00 0.000000e+00

2.500000e-01 3.125000e-02

5.000000e-01 1.416016e-01

7.500000e-01 3.533020e-01

1.000000e+00 6.948557e-01

err =

0.0234

(b):

t_i y_i

0.000000e+00 0.000000e+00

2.500000e-01 3.125000e-02

5.000000e-01 1.103516e-01

7.500000e-01 2.268372e-01

1.000000e+00 3.725290e-01

err =

0.0046

7 Oppgave 6.3.3, s. 302, [S]

Solution:

We introduce a new variable z = y′ so that z′ = y′′.

(a): (
y
z

)′
=

(
z
ty

)
(b): (

y
z

)′
=

(
z

2tz − 2y

)
(c): (

y
z

)′
=

(
z

tz + y

)
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8 Consider the initial value problem

y′(t) = λy(t), t > 0

y(0) = y0,

where λ ∈ C. Its solution is y(t) = y0 exp(λt).

Suppose that we use a numerical method (such as e.g. forward Euler or explicit
trapezoid) method to solve this problem starting from a point w0 = y0. The stability
region for the method is a set of points in the complex plane, such that the numerical
solution (w0, w1, . . . ) stays bounded (i.e., ∃C > 0 : ∀i, |wi| ≤ C).

Find the stability region for (a) forward Euler method; (b) explicit Trapezoid met-
hod.

Solution:

(a): In this case wk = wk−1 + hf(tk−1, wk−1) = (1 + hλ)wk−1 = (1 + hλ)kw0. Thus
wk stays bounded iff |1 + hλ| ≤ 1. That is, the stability region for the forward Euler
method is a circle in the complex plane of radius 1 around the point −1.

Note: this implies, in particular, that if λ = iω is purely imaginary then there is no
h > 0 such that hλ is in the stability region. Thus whereas exp(iωt) = cos(ωt) +
i sin(ωt) is oscillatory (bounded) in this case, the Euler’s method will result in an
unbounded solution (long term behaviour) regardless of how small we chose h.

(b): Now we have wk = wk−1+h/2[f(tk−1, wk−1)+f(tk−1+h,wk−1+hf(tk−1, wk−1))]+
wk−1+h/2[λwk−1+λ(wk−1+hλwk−1)][1+hλ+0.5(hλ)2]wk−1 = [1+hλ+0.5(hλ)2]kw0.
Thus z = hλ is in the stability region of the explicit trapezoid method if and only if
|1 + z + 0.5z2| ≤ 1.

For an arbitrary purely imaginary number λ = iω and any h > 0 we have |p(iωh)| =
|1− 0.5ω2h2 + iωh| = [(1− 0.5ω2h2)2 + ω2h2]1/2 = [1 + ω4h4]1/2 > 1 as in the case
of forward Euler, with the same implications. However, for small h > 0 we can use a
first order Taylor series expansion to get [1 + ω4h4]1/2 ≈ 1 + ω4h4/2 which is much
closer to 1 than |1 + iωh| = (1 + ω2h2)1/2 ≈ 1 + ω2h2/2 (forward Euler).

Here is the plot of stability regions:
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(a) forward Euler (b) explicit Trapezoid

“Computeroppgaver”

9 Oppgave 6.1.5, s. 293, [S]
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Solution:

See oppgave_6_1_5.m
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10 Repeat the previous exercise, but use the explicit trapezoid method instead.

Solution:

See oppgave_10.m

10
-3

10
-2

10
-1

h

10
-6

10
-5

10
-4

10
-3

10
-2

E
rr

o
r

10
-3

10
-2

10
-1

h

10
-7

10
-6

10
-5

10
-4

10
-3

E
rr

o
r

(a) (b)

11 Oppgave 6.3.10, s. 314, [S]. Use the initial conditions specified in the book but
different masses: m1 = m3 = 0.03, m2 = 0.3. Use the explicit Trapezoid method.

Solution:

See three_body_problem.m
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12 Oppgave 6.3.11, s. 314, [S]. Use the explicit Trapezoid method.

Solution:

See three_body_problem.m
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