"Teorioppgaver"

1 Oppgave 6.1.3 (b), (e), s. 291, [S]

Solution:

(b): Separation of variables leads to the equation $\int \mathrm{d} y / y=\int t^{2} \mathrm{~d} t$, or $\log (y)=$ $t^{3} / 3+C$ where C is an arbitrary integration constant. Thus $y(t)=\exp \left(t^{3} / 3+C\right)$, where $C=0$ from the equation $y(0)=1$.
(e): Here we get $\int y^{2} \mathrm{~d} y=\int 1 \mathrm{~d} t$, or $y^{3} / 3=t+C, y(t)=(3 t+3 C)^{1 / 3}$. Finally $y(0)=1$ and therefore $3 C=1$.

2 Oppgave 6.1.4 (a), (b), s. 291, [S]

Solution:

(a): The general solution to the homogeneous system $y^{\prime}=y$ is $y_{0}(t)=C \exp (t)$, where C is an arbitrary constant.
Further, a particular solution to the system $y^{\prime}=t+y$ can be search in the form $y_{1}(t)=a t+b$, from which it follows that $a=b=-1$.

Thus we can put $y(t)=y_{0}(t)+y_{1}(t)$. The constant C is then determined from the equation $y(0)=0$ and thus $y(t)=-t-1+\exp (t)$.
(b): Similarly to (a), $y_{0}(t)=C \exp (-t), y_{1}(t)=t-1$, and as a result $y(t)=$ $t-1+\exp (-t)$.

3 Oppgave 6.1.9, s. 292, [S]

Solution:

(a): Here $f(t, y)=t$ - independent from y and thus f is uniformly Lipschitz continuous with respect to y on $[a, b] \times(-\infty,+\infty)$ with the constant $L=0$. Theorem 6.2 then guarantees the existence and uniqueness of solutions on an arbitrary interval.
(b), (c): Here $f(t, y)= \pm y$, which is a linear function with the slope ± 1. In either case f is uniformly Lipschitz continuous with respect to y with constant $L=1$ on
$[a, b] \times(-\infty,+\infty)$, regardless of a, b. Theorem 6.2 then guarantees the existence and uniqueness of solutions on an arbitrary interval.
(d): Here $f(t, y)=-y^{3}$, which is continuously differentiable on any interval $[\alpha, \beta]$. Thus the function is also uniformly Lipschitz continuous on any finite interval, but the Lipschitz constant $L=\max _{y \in[\alpha, \beta]}|d f / d y|=\max _{t \in[\alpha, \beta]}\left|3 y^{2}\right|$ may vary from one interval to another. In particular, on $[0,1]$ the Lipschitz constant is 3 . Any ways, in this situation Theorem 6.2 only guarantees existence and uniqueness of solutions on some sub-interval $[0, c], c>0$.

4 Oppgave 6.1.10, s. 292, [S]

Solution:

5 Oppgave 6.1.11, s. 292, [S]

Solution:

(a): $y(t)=t^{2} / 2+y(0)$. Theorem 6.3 is clearly verified with $L=0$.
(b,c): $y(t)=y(0) \exp (\pm t)$. Theorem 6.3 is verified with $L=1$. In fact, in (c) any non-negative L or even $L \geq-1$ is sufficient, but this is of course is not a valid value for the Lipschitz constant.
(d): If $y(0)=0$ we can use the solution $y(t) \equiv 0$. For $y(0)=1$ we can use separation of variables to find that $y(t)=(2 t+C)^{-1 / 2}$, where $1=y(0)=C^{-1 / 2}$. Note that the
difference between the two solutions decreases with time, and therefore the estimate of Theorem 6.3 holds with any $L \geq 0$ in this case.

6 Oppgave 6.2 .2 , s. $302,[\mathrm{~S}]$

Solution:

(a):
t_i y_i
$0.000000 \mathrm{e}+000.000000 \mathrm{e}+00$
$2.500000 \mathrm{e}-013.125000 \mathrm{e}-02$
$5.000000 \mathrm{e}-011.416016 \mathrm{e}-01$
$7.500000 \mathrm{e}-013.533020 \mathrm{e}-01$
$1.000000 \mathrm{e}+006.948557 \mathrm{e}-01$
err =

$$
0.0234
$$

(b):
t_i y_i
$0.000000 \mathrm{e}+000.000000 \mathrm{e}+00$
$2.500000 \mathrm{e}-013.125000 \mathrm{e}-02$
$5.000000 \mathrm{e}-011.103516 \mathrm{e}-01$
$7.500000 \mathrm{e}-012.268372 \mathrm{e}-01$
$1.000000 \mathrm{e}+003.725290 \mathrm{e}-01$
err =

$$
0.0046
$$

7 Oppgave 6.3.3, s. 302, [S]

Solution:

We introduce a new variable $z=y^{\prime}$ so that $z^{\prime}=y^{\prime \prime}$.
(a):

$$
\binom{y}{z}^{\prime}=\binom{z}{t y}
$$

(b):

$$
\binom{y}{z}^{\prime}=\binom{z}{2 t z-2 y}
$$

(c):

$$
\binom{y}{z}^{\prime}=\binom{z}{t z+y}
$$

8 Consider the initial value problem

$$
\begin{aligned}
y^{\prime}(t) & =\lambda y(t), \quad t>0 \\
y(0) & =y_{0},
\end{aligned}
$$

where $\lambda \in \mathbb{C}$. Its solution is $y(t)=y_{0} \exp (\lambda t)$.
Suppose that we use a numerical method (such as e.g. forward Euler or explicit trapezoid) method to solve this problem starting from a point $w_{0}=y_{0}$. The stability region for the method is a set of points in the complex plane, such that the numerical solution $\left(w_{0}, w_{1}, \ldots\right)$ stays bounded (i.e., $\exists C>0: \forall i,\left|w_{i}\right| \leq C$).
Find the stability region for (a) forward Euler method; (b) explicit Trapezoid method.

Solution:

(a): In this case $w_{k}=w_{k-1}+h f\left(t_{k-1}, w_{k-1}\right)=(1+h \lambda) w_{k-1}=(1+h \lambda)^{k} w_{0}$. Thus w_{k} stays bounded iff $|1+h \lambda| \leq 1$. That is, the stability region for the forward Euler method is a circle in the complex plane of radius 1 around the point -1 .
Note: this implies, in particular, that if $\lambda=i \omega$ is purely imaginary then there is no $h>0$ such that $h \lambda$ is in the stability region. Thus whereas $\exp (i \omega t)=\cos (\omega t)+$ $i \sin (\omega t)$ is oscillatory (bounded) in this case, the Euler's method will result in an unbounded solution (long term behaviour) regardless of how small we chose h.
(b): Now we have $w_{k}=w_{k-1}+h / 2\left[f\left(t_{k-1}, w_{k-1}\right)+f\left(t_{k-1}+h, w_{k-1}+h f\left(t_{k-1}, w_{k-1}\right)\right)\right]+$ $w_{k-1}+h / 2\left[\lambda w_{k-1}+\lambda\left(w_{k-1}+h \lambda w_{k-1}\right)\right]\left[1+h \lambda+0.5(h \lambda)^{2}\right] w_{k-1}=\left[1+h \lambda+0.5(h \lambda)^{2}\right]^{k} w_{0}$. Thus $z=h \lambda$ is in the stability region of the explicit trapezoid method if and only if $\left|1+z+0.5 z^{2}\right| \leq 1$.
For an arbitrary purely imaginary number $\lambda=i \omega$ and any $h>0$ we have $|p(i \omega h)|=$ $\left|1-0.5 \omega^{2} h^{2}+i \omega h\right|=\left[\left(1-0.5 \omega^{2} h^{2}\right)^{2}+\omega^{2} h^{2}\right]^{1 / 2}=\left[1+\omega^{4} h^{4}\right]^{1 / 2}>1$ as in the case of forward Euler, with the same implications. However, for small $h>0$ we can use a first order Taylor series expansion to get $\left[1+\omega^{4} h^{4}\right]^{1 / 2} \approx 1+\omega^{4} h^{4} / 2$ which is much closer to 1 than $|1+i \omega h|=\left(1+\omega^{2} h^{2}\right)^{1 / 2} \approx 1+\omega^{2} h^{2} / 2$ (forward Euler).
Here is the plot of stability regions:

"Computeroppgaver"

9 Oppgave 6.1.5, s. 293, [S]

Solution:

See oppgave_6_1_5.m

(a)

(b)

10 Repeat the previous exercise, but use the explicit trapezoid method instead.

Solution:

See oppgave_10.m

(a)

(b)

11 Oppgave 6.3.10, s. $314,[\mathrm{~S}]$. Use the initial conditions specified in the book but different masses: $m_{1}=m_{3}=0.03, m_{2}=0.3$. Use the explicit Trapezoid method.

Solution:

See three_body_problem.m

12 Oppgave 6.3.11, s. 314, [S]. Use the explicit Trapezoid method.

Solution:

See three_body_problem.m

(a)

(b)

