TMA 4305 Partial Differently Equations
6 Angst zozo
solution outline
Prottan 1 looking at $u_{t}+f(u)_{x}=0 \quad f(u)=\arctan u$ The chavecteristic speed is $f^{\prime}(u)=\frac{1}{\sqrt{1+u^{2}}}$
The cheractenitic starting at $x=\xi$ has speed

$$
v(\xi)=f^{\prime}(u(\xi))=f^{\prime}(\xi)=1 / \sqrt{1+\xi^{2}}
$$

and equation $x=\xi+\frac{t}{\sqrt{1+\xi^{2}}}$.
Since $u=u(0, \xi)=\xi$ on this charocterizic, ne have

$$
x=u+\frac{t}{1+u^{2}}
$$

which defines u implicitly from (t, x).
The equation an he solved for u so longs $\frac{\partial x}{\partial u}>0$.
$w=$ find $\frac{\partial x}{\partial u}=1-\frac{2 t u}{\left(1+u^{2}\right)^{2}}$, so we ned $\frac{2 u}{\left(1+u^{2}\right)^{2}}<\frac{1}{t}$
for this to hole. Look for the maximum value of \mathcal{T} this:

$$
\begin{aligned}
\frac{d}{d u} 2 u\left(1+u^{2}\right)^{-2} & =2\left(1+u^{2}\right)^{-2}-8 u^{2}\left(1+u^{2}\right)^{-3} \\
& =2\left(1+u^{2}\right)^{-3}\left(1+u^{2}-4 n^{2}\right) \\
& =2\left(1+u^{2}\right)^{-3}\left(1-3 u^{2}\right)
\end{aligned}
$$

So $\frac{2 u}{\left(1+u^{2}\right)^{2}}$ achieves its maximum at $u=\sqrt{1 / 3}$

$$
\text { ard we find }\left.\frac{2 u}{\left.\left(1+u^{2}\right)^{2}\right)^{2}}\right|_{u=\sqrt{1 / 3}}=\frac{2 \sqrt{1 / 3}}{(4 / 3)^{2}}=\frac{3}{8} \sqrt{3}
$$

and the dossied solution is valid fer

$$
t<T=\frac{1}{\frac{3}{4} \sqrt{3}}=\frac{8}{9} \sqrt{3} .
$$

The chavederistic fo $u=\sqrt{1 / 3}$ starts at $x=\sqrt{1 / 3}$ and has speed $f^{\prime}(\sqrt{1 / 3})=\frac{1}{\sqrt{1+(\sqrt{1 / 3})^{2}}}=\frac{3}{4}$.

Nearly charceteristics stat colliding ot $t=\frac{8}{9} \sqrt{3}$, at position $x=\sqrt{1 / 3}+\frac{3}{4} \cdot \frac{8}{9} \sqrt{3}=\frac{1}{3} \sqrt{3}+\frac{2}{3} \sqrt{3}=\sqrt{3}$

The resulting shack will han a speed given by

$$
s=\frac{f\left(u_{r}\right)-f\left(u_{l}\right)}{u_{r}-u_{l}} \approx f^{\prime}(u)
$$

with $u=\sqrt{1 / 3}$, since u_{r} end u_{2} will he close bo this value. Thus the initid shock speed is

$$
s \approx f^{\prime}(\sqrt{1 / 3})=\frac{3}{4}
$$

with equality in the limit os $t \geqslant T$.

Problem 2
The smallest agarche λ_{1} is the minimum of the Rayleigh quationt $\frac{\|\nabla u\|^{2}}{\|u\|^{2}}$ for $u \in H_{0}^{1}(\Omega)$. Thus $\lambda_{1} \leqslant \frac{\|\nabla u\|^{2}}{\|u\|^{2}}$ for any $u \in H_{0}^{\prime}(\Omega)$.

Picking $u(x, y)=(L-r) y=\left(r-r^{2}\right) \sin \theta$ we node that $u=0$ on $\partial \Omega$, a ad indeed $u \in H_{0}^{\prime}(\Omega)$.
we find

$$
\begin{aligned}
\|u\|^{2} & =\int_{\Omega}|u|^{2} d x d y=\int_{0}^{1} \int_{0}^{\pi}\left(r-r^{2}\right)^{2} \sin ^{2} \theta d \theta r d r \\
& =\int_{0}^{1}\left(r^{3}-2 r^{4}+r^{5}\right) d r \int_{0}^{\pi} \sin ^{2} \theta d \theta \\
& =\left(\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right) \cdot \frac{\pi}{2}=\frac{15-24+10}{60} \cdot \frac{\pi}{2}=\frac{\pi}{120} \\
|\nabla u|^{2} & =\left|\frac{\partial u}{\partial r}\right|^{2}+\left|\frac{1}{r} \frac{\partial u}{\partial \theta}\right|^{2}=((1-2 r) \sin \theta)^{2}+((1-r) \cos \theta)^{2}
\end{aligned}
$$

ad a similes calculation to the above yields

$$
\begin{aligned}
\|\nabla u\|^{2} & =\int_{\Omega}|\nabla u|^{2} d x d y=\int_{0}^{1}(1-2 r)^{2} r d r \cdot \frac{\pi}{2}+\int_{0}^{1}(1-r)^{2} r d r \cdot \frac{\pi}{2} \\
& =\int_{0}^{1}\left(1-4 r+4 r^{2}+1-2 r+r^{2}\right) r d r \cdot \frac{\pi}{2} \\
& =\int_{0}^{1}\left(2 r-6 r^{2}+5 r^{3}\right) d r \cdot \frac{\pi}{2} \\
& =\left(1-2+\frac{5}{4}\right) \cdot \frac{\pi}{2}=\frac{\pi}{8}
\end{aligned}
$$

So $\frac{\|\nabla u\|^{2}}{\|u\|^{2}}=\frac{120}{8}=15$, and so $\lambda_{1} \leqslant 15$.

Problem 3
The percholic bounday
(red in the picture) is

$$
\underbrace{\{0\} \times[0,1]}_{\substack{\text { initial } \\ \text { Gounday }}} \cup \underbrace{[0, T] \times\{0,1\}}_{\substack{\text { spatide } \\ \text { boundary }}}
$$

when we subtred the percholie boundary, we are eff with $(0, T] \times(0,1)$ i.e., $0<t \leq T, 02 x<1$.
If a smooth function u has a load maximum at such a point, then $u_{x}=0, u_{x x} \leqslant 0$, and $u_{t} \geqslant 0$ ($u_{t}=0$ if $t<T$; but at $t=T$, only $u_{t} \geqslant 0$ remains).
There plugged into the equation

$$
u_{t}=u_{x x}+\sin \left(u_{x}\right)-\varepsilon \text { yield } 0 \leq u_{t} \leq-\varepsilon \text {, }
$$ which s a contradiction. So u has no load maximum except of the percbolic boundary.

Wide Γ for the pandidic bou-day. If $u_{t}=u_{x x}+\sin \left(v_{x}\right)$, let $v(t, x)=u(t, x)-t \varepsilon$.
Then $v_{x}=u_{x}, v_{x x}=u_{x x}$, and

$$
v_{t}=u_{t}-\varepsilon=u_{x_{x}}+\sin \left(u_{x}\right)-\varepsilon=v_{x_{x}}+\sin \left(v_{x}\right)-\varepsilon .
$$

By the fist pert, v has no (l.cel) moximinm on $\bar{S} N$. But σ is continuous on the compact sat $\underset{\Omega}{ }$, so it hes a maxim: Therefore $v \leqslant \max \sigma$. So $u=v+t \varepsilon \leqslant \max _{\Gamma} v+T \varepsilon \leqslant \max _{\Gamma} u+T \varepsilon$. Now lat $\varepsilon \searrow 0$.

Problem 4 We have a linear equation, with initial and boundary conditions also lino ar. So to show uniqueness, it is enough to put $f=0$ and $g=h=0$ and to prove that $u=0$.
The equation yields $u_{t t} u_{t}+u_{x x x x} u_{t}=0$, hence

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{1} \frac{1}{2} u_{t}^{2} d x+\int_{0}^{1} u_{x x x x} u_{t} d x=0 \text {. Nw } \\
& \int_{0}^{1} u_{x x x x} u_{t} d x=\underbrace{\left[u_{x x x} u_{t}\right]_{x=0}^{x=1}}_{\text {zee, sere(B) }}-\int_{0}^{1} u_{x x x} u_{x t} d x \\
& =-\underbrace{\left[u_{x x} u_{x t}\right]_{x=0}^{1}}_{\text {zero, see (1) }}+\int_{0}^{1} u_{x x} u_{x x t} d x \\
& =\int_{0}^{1} \frac{1}{2}\left(u_{x x}^{2}\right)_{t} d x=\frac{d}{d t} \int_{0}^{1} \frac{1}{2} u_{x_{x}}^{2} d x \text {, } \\
& \text { so } \frac{d}{d t} \int_{0}^{1}\left(\frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x x}^{2}\right) d x=0 \text {. }
\end{aligned}
$$

Sing the integral is 0 for $t=0$, it is zen for $t>0$.
In particular $u_{t}=0$, so $u(6, x)=u(0, x)=0$.
(A) Became $u(t, x)=0$ fo $x=0$ and $x=1$, de $t>0$
(B) Becack $u_{x}(6,0)=0$ $f_{0} t>0$, so $u_{x_{t}}(t, 0)=0$ end because $u_{x x}(t, 1)=0$.

Problem 5 We have an explicit solution for the wave equation with initial data $u(0, \vec{x})=g(\vec{x})$ end $u_{t}(0, \vec{x})=h(\vec{x})$. In this ane, $g(\vec{x})=0$, so we only reed half of the formula:

$$
\begin{aligned}
u(t, \vec{x}) & =t \int_{\partial B(\vec{x} ; t)} h(y) d S(y)=t \int_{\partial B(\vec{x} ; t)} \frac{d S(\vec{y})}{\sqrt{1+|\hat{y}|^{2}}} \\
& =t \int_{S^{2}} \frac{d S(\vec{z})}{\sqrt{1+|\vec{x}+\vec{t}|^{2}}} \\
& =\int_{S^{2}} \frac{d S^{1}(\vec{z})}{\sqrt{\frac{1}{t^{2}}+|\vec{x} t+\vec{z}|^{2}}} \rightarrow 1 \text { when } t \rightarrow \infty
\end{aligned}
$$

Notes: $f \ldots$ is the average integral.
$B(\bar{x} ; t)$ is the ball of radius t centred et \bar{x}, $\partial B(\bar{y} j t)$ is its boundary (a phone)
and $S^{2}=\partial B\left(\hat{o}_{j} 1\right)$ (the unit sphere).
The find limit is justified by noting that $|\vec{z}|=1 \mathrm{e-d} \vec{x}$ is fixed, so the integrand converges uniformly to 1 when $t \rightarrow \infty$.

