TMA4305 Partiel Differentiel Equation 6 August 2020 Solution outline PRELIMINARY VERSION Maj contain mistakes

Problem 1 Looking at $u_t + f(u)_{x=0}$ f(u) = arcten uThe characteristic speed is $f'(u) = \frac{1}{\sqrt{1+u^2}}$

The characteristic starting at x=3 has speed $v(z) = f'(u(z)) = f'(z) = 1/\sqrt{1+z^2}$ and aquation $x = z + \frac{t}{\sqrt{1+z^2}}$. Since u = u(0,z) = z on this characteristic, we have $x = u + \frac{t}{1+u^2}$

which defines a implicitly from (t_1x) . The equation c_{-} be solved for a so long or $\frac{\partial x}{\partial u} > 0$. We find $\frac{\partial x}{\partial u} = 1 - \frac{2 + u}{(1 + u^2)^2}$, so we need $\frac{2u}{(1 + u^2)^2} < \frac{1}{4}$ for this to hold. Look for the maximum value of \int this. $\frac{d}{du} 2u(1 + u^2)^{-2} = 2(1 + u^2)^{-2} - 8u^2(1 + u^2)^{-3}$ $= 2(1 + u^2)^{-3}(1 + u^2 - 4u^2)$ $= 2(1 + u^2)^{-3}(1 - 3u^2)$ So $\frac{2u}{(1 + u^2)^2}$ achieves its maximum at $u = \sqrt{1/3}$ and we find $\frac{2u}{(1 + u^2)^2} \Big|_{u=\sqrt{1/3}} = \frac{2\sqrt{1/3}}{(4 + 3)^2} = \frac{3}{8}\sqrt{3}$ and the classical solution is valid for

$$t < T = \frac{1}{\frac{3}{2}\sqrt{3}} = \frac{8}{9}\sqrt{3}.$$

The charedenshic for $u = \sqrt{1/3}$ effects at $x = \sqrt{1/3}$
and has speed $f'(\sqrt{1/3}) = \frac{1}{\sqrt{1+(\sqrt{1/3})^2}} = \frac{3}{4}.$
Nearly charcedenishies that colliding at $t = \frac{8}{9}\sqrt{5}$,
at position $x = \sqrt{1/3} + \frac{3}{4} \cdot \frac{8}{9}\sqrt{3} = \frac{1}{5}\sqrt{3} + \frac{2}{5}\sqrt{5} = \sqrt{3}$

The volting shack will have a speed given by

$$S = \frac{f(uv) - f(uv)}{uv - uv} \approx f'(u)$$
with $u = \sqrt{1/3}$, since u_v end u_v will be close to this
value. Thus the initial shock speed is
 $S \approx f'(\sqrt{1/3}) = \frac{3}{4}$

So
$$\frac{\|\nabla u\|^2}{\|u\|^2} = \frac{120}{8} = 12$$
, and so $\lambda_1 \le 15$.

Problem 3
The percholic boundary
(ved in the picture) 3

$$\{o]_X[o,1] \cup [o,T] \times \{o,1\}$$

initial symbol
boundary
When we subtred the percholic boundary,
we are left with $(o,T]_X(o,1)$ i.e., $o < t \leq T$, $o = x < 1$.
If a smooth function we have a local maximum
at such a point, then $W_X = 0$, $W_X \leq 0$, and $W_Z \geq 0$
 $(W_Z = 0 \text{ if } t \leq T$; but at $t \equiv T$, only $W_Z \geq 0$ remains).
These phagod into the agention
 $W_Z = W_X + \sin(w_X) - \varepsilon$ yield $0 \leq W_Z \leq -\varepsilon$,
which is a construction. So we have no local
maximum axcopil at the percholic boundary.
Write T for the percholic boundary.
So to the perch to have the compact set \mathcal{D}_1
so it bot a maxim: Therefore US max of. So
 $U = Ottel \leq max of tT \in max u tTE. New let ≥ 10 .$

Problem 4 We have a finear equation,
with initial and boundary conditions elso linear.
So to show uniqueness, it is enough to put
$$f=0$$

and $g=h=0$ and to prove that $u=0$.
The equation yields upper 4 to $u=0$, hence
 $dt \int \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac$

Problem 5 We have an explicit solution for the
wave equation with initial data
$$u(0,\vec{x}) = g(\vec{x})$$

and $u_{\xi}(0,\vec{x}) = h(\vec{x})$. In this case, $g(\vec{x}) = 0$, so
we only need half of the formula:
 $u(t,\vec{x}) = t \int h(y) dS(y) = t \int \frac{dS(\vec{y})}{|1+|\vec{y}|^2}$
 $= t \int \frac{dS(\vec{x})}{(1+|\vec{x}+t\vec{z})^2}$
 $= \int \frac{dS(\vec{x})}{(1+|\vec{x}+t\vec{z})^2} \rightarrow 1$ when two
 $S^2 \sqrt{|t|^2 + |\frac{\vec{y}}{t} + \frac{\vec{y}}{t}|^2} \rightarrow 1$ when two
 $B(\vec{x};t)$ is the evenage integral.
 $B(\vec{x};t)$ is the evenage integral.
 $B(\vec{x};t)$ is the local of values t centred et \vec{x} ,
 $B(\vec{x};t)$ is the local of values t centred et \vec{x} ,
 $DB(\vec{y};t)$ is the build of values t centred et \vec{x} .
The final limit is justified by why that
 $|\vec{z}|=|$ and \vec{x} is fixed, so the integrand
converges uniformly to 1 when $t > 0$.