
TMA4305 Partial differential equations 2017-11-29
Solution

Problem 1

a. We do both cases at once, always with ∓ being the sign opposite ±:

d𝐸±
d𝑡 = 1

2 ∫
𝑡

0
(𝑢𝑡 ∓ 𝑢𝑥)(𝑢𝑡𝑡 ∓ 𝑢𝑥𝑡) d𝑥 =

1
2 ∫

𝑡

0
(𝑢𝑡 ∓ 𝑢𝑥)(𝑢𝑥𝑥 ∓ 𝑢𝑥𝑡) d𝑥 = ∓14 ∫

𝑡

0

d
d𝑥(𝑢𝑡 ∓ 𝑢𝑥)2 d𝑥

= ∓[(𝑢𝑡 ∓ 𝑢𝑥)2]
𝑥=1

𝑥=0
= ∓(𝑒±(𝑡, 1) − 𝑒±(𝑡, 0)).

Alternative solution: (Here using 𝜕𝑡 as a shorthand for 𝜕/𝜕𝑡, etc.) Note that (𝜕𝑡±𝜕𝑥)(𝑢𝑡∓𝑢𝑥) =
𝑢𝑡𝑡−𝑢𝑥𝑥 = 0, so that 𝑢𝑡∓𝑢𝑥, and therefore 𝑒±, is a function of 𝑥∓𝑡. Say, 𝑒±(𝑡, 𝑥) = ̃𝑒±(𝑥∓ 𝑡): Then

𝐸±(𝑡) = ∫
1

0
̃𝑒±(𝑥 ∓ 𝑡) d𝑥 = ∫

1∓𝑡

∓𝑡
̃𝑒±(𝑠) d𝑠,

and differentiation with respect to 𝑡 yields the desired result by the fundamental theorem of calcu-
lus.

b. Start with the integral:

d
d𝑡 ∫

𝑡

0
𝑒(𝑡, 𝑥) d𝑥 =

d𝐸+
d𝑡 + d𝐸−

d𝑡 = (𝑒+(𝑡, 0) − 𝑒−(𝑡, 0)) − (𝑒+(𝑡, 1) − 𝑒−(𝑡, 1)).

Next, get

𝑒+(𝑡, 0) − 𝑒−(𝑡, 0) +
d
d𝑡(

𝑎
2𝑢(𝑡, 0)

2) = −𝑢𝑡(𝑡, 0)𝑢𝑥(𝑡, 0) + 𝑎𝑢(𝑡, 0)𝑢𝑡(𝑡, 0) = 0

by the given boundary condition at 𝑥 = 0. Similarly,

−(𝑒+(𝑡, 1) − 𝑒−(𝑡, 1)) +
d
d𝑡(

𝑏
2𝑢(𝑡, 1)

2) = 𝑢𝑡(𝑡, 1)𝑢𝑥(𝑡, 1) + 𝑏𝑢(𝑡, 1)𝑢𝑡(𝑡, 1) = 0.

Combining the results of the above three calculations yields the desired result.

The uniqueness result follows because the problem, including the initial and boundary conditions,
is linear. The difference of two solutions will then solve the homogeneous problem. The energy of
the differencewill be zero initially, and hence zero forever, so the difference remains zero – because
the 𝑡 derivative must vanish, and integrating from 𝑡 = 0 completes the argument.

Problem 2

Let 𝜆1 be the smallest eigenvalue, and 𝑢1 the corresponding (real) eigenfunction. When 𝑢 is a real
eigenfunction with an eigenvalue 𝜆 ≠ 𝜆1, we know that 𝑢 ⟂ 𝑢1:

∫
Ω
𝑢𝑢1 d𝑛𝒙 = 0

(without any need for a complex conjugate, since 𝑢 and 𝑢1 are real-valued). The integrand cannot
be identically zero, since 𝑢 is never zero in Ω. Therefore, the integrand must be of both signs, and
hence so must 𝑢, since 𝑢1 is not.
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Problem 3

a. Put 𝐸(𝑡) = ∫Ω
1
2𝑢

2 d𝑛𝒙, and compute

d𝐸
d𝑡 = ∫

Ω
𝑢𝑢𝑡 d𝑛𝒙 = ∫

Ω
𝑢∇ ⋅ (𝑐∇𝑢) d𝑛𝒙 = ∫

𝜕Ω
𝝂 ⋅ (𝑢𝑐∇𝑢) d𝑆 −∫

Ω
∇𝑢 ⋅ (𝑐∇𝑢) d𝑛𝒙

where the first integral vanishes because 𝑐 = 0 on 𝜕Ω, so we get
d𝐸
d𝑡 = −∫

Ω
𝑐 |∇𝑢|2 d𝑛𝒙 ≤ 0

because 𝑐 ≥ 0. Thus 𝐸(𝑡) in non-increasing. Since 𝐸(𝑡) ≥ 0 always, and the initial condition gives
𝐸(0) = 0, we must have 𝐸(𝑡) = 0 for all 𝑡, and so 𝑢 = 0.

b. The weak maximum principle: Given a bounded domain Ω and 𝑇 > 0, let Ω𝑇 = (0, 𝑇) × Ω, and
Γ = ({ 0 } ×Ω)∪ ([0, 𝑇] × 𝜕Ω) (the parabolic boundary). Then any solution 𝑢 ∈ 𝐶2(Ω𝑇) of the heat
equation 𝑢𝑡 − Δ𝑢 = 0 achieves its maximum on Γ.
The sameholdswhen𝑢 solves the equation frompart a: Let 𝜖 > 0, and let 𝑣(𝑡, 𝒙) = 𝑢(𝑡, 𝒙)−𝜖𝑡. Then
𝑣𝑡 −∇ ⋅ (𝑐∇𝑣) = −𝜖 < 0. If 𝑣 has a maximum at some point (𝑡0, 𝒙0) ∈ Ω𝑇 ⧵ Γ, then∇𝑣(𝑡0, 𝒙0) = 0,
and so ∇ ⋅ (𝑐∇𝑣) = 𝑐Δ𝑣 + ∇𝑐 ⋅ ∇𝑣 = 𝑐Δ𝑣 ≤ 0 at (𝑡0, 𝒙0). Also, 𝑣𝑡 ≥ 0 (with equality if 𝑡 < 𝑇),
so 𝑣𝑡 − ∇ ⋅ 𝑐∇𝑣 ≥ 0 at (𝑡0, 𝒙0), which is a contradiction. But 𝑣, being a continuous function, has a
maximum somewhere on the compact set Ω𝑇, so this maximummust occur in Γ. We conclude

𝑢 = 𝑣 + 𝜖𝑡 ≤ max
Γ

𝑣 + 𝜖𝑇 ≤ max
Γ

𝑢 + 𝜖𝑇.

Now letting 𝜖 → 0, we conclude 𝑢 ≤ maxΓ 𝑢.

Problem 4

a. First, Δ𝑢 is subharmonic because Δ(Δ𝑢) ≥ 0. Therefore, Δ𝑢 ≤ 0 inΩ because of the subharmonic-
ity and the assumption Δ𝑢 ≤ 0 on 𝜕Ω (from the weak maximum principle applied to 𝑣 = Δ𝑢).
Thus 𝑢 is superharmonic. It follows, this time from the weakminimum principle, that 𝑢 ≥ 0 onΩ.
Finally, the strong minimum principle asserts that if 𝑢 has any zero inΩ, then 𝑢 is constant. Since
it is not, then 𝑢 > 0 in Ω.

b. Note that 𝑢 achieves its maximum and minimum inΩ, because of continuity and compactness. If
the maximum is greater than 1, then it is achieved in Ω, and Δ𝑢 = 𝑢3 − 𝑢 > 0 at the maximum
point. But this cannot happen, since Δ𝑢 ≤ 0 at a maximum. Therefore 𝑢 ≤ 1 in Ω.
A similar argument shows that 𝑢 ≥ −1. A quicker way is to note that −𝑢 satisfies the same con-
ditionss as 𝑢 itself (with different boundary values, but still between −1 and 1), so the first part of
the argument shows that −𝑢 ≤ 1.

Problem 5

a. The quasilinear form of the equation is

ℎ𝑡 + 2ℎ1/2ℎ𝑥 = 0,

so the characteristic speed associatedwithℎ is 2ℎ1/2. Therefore, the characteristic starting at (𝑡, 𝑥) =
(0, 𝜉) has speed 2(1−𝜉)1/2 if 0 ≤ 𝜉 ≤ 1, 2 of 𝜉 < 0, and 0 if 𝜉 > 1. The equation of this characteristic,
then, is

⎧

⎨
⎩

𝑥 = 𝜉 + 2𝑡 if 𝜉 < 0,
𝑥 = 𝜉 + 2(1 − 𝜉)1/2𝑡 if 0 ≤ 𝜉 ≤ 1,
𝑥 = 𝜉 if 𝜉 > 1.

We can detect the collision of characteristics by taking the derivative 𝜕𝜉𝑥 in the above equations.
When this derivative becomes ≤ 0, characteristics collide. For 0 < 𝜉 < 1, we find 𝜕𝜉𝑥 = 1 − (1 −
𝜉)−1/2𝑡, and 𝜕𝜉𝑥 ≤ 0 if and only if 𝑡 ≥ (1 − 𝜉)1/2. Since (1 − 𝜉)1/2 → 0 when 𝜉 → 1, characteristics
start colliding near 𝜉 = 1 at time 0.
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b. In the specified region, the solution is given by the characteristics emanating from (𝑡, 𝑥) = (0, 𝜉)
with 0 < 𝜉 < 1. On one such characteristic, with the equation 𝑥 = 𝜉 + 2(1 − 𝜉)1/2𝑡, we know that
ℎ = 1 − 𝜉, so we may write 𝑥 = 1 − ℎ + 2ℎ1/2𝑡 and solve for ℎ without solving for 𝜉 first. Here, it is
best to treat ℎ1/2 as the unknown at first. We get, in order:

ℎ − 2𝑡ℎ1/2 = 1 − 𝑥

(ℎ1/2 − 𝑡)2 = 1 − 𝑥 + 𝑡2

ℎ1/2 = 𝑡 ± (1 − 𝑥 + 𝑡2)1/2.

Looking at the initial condition and setting 𝑡 = 0, it is clear that we must pick the positive sign:

ℎ = (𝑡 + (1 − 𝑥 + 𝑡2)1/2)2.

c. The flux function for the problem is 𝑓(ℎ) = 4
3ℎ

3/2. The solution on the left side of the shock,
ℎ(𝑡, 𝜎(𝑡)−), is given by the solution found in b, while the solution on the right is zero. The Rank-
ine–Hugoniot condition becomes

d𝜎
d𝑡 =

𝑓(ℎ(𝑡, 𝜎(𝑡)−)) − 𝑓(ℎ(𝑡, 𝜎(𝑡)+))
ℎ(𝑡, 𝜎(𝑡)−) − ℎ(𝑡, 𝜎(𝑡)+) =

4
3(ℎ(𝑡, 𝜎(𝑡)

−))3/2

ℎ(𝑡, 𝜎(𝑡)−) = 4
3(ℎ(𝑡, 𝜎(𝑡)

−))1/2,

and finally inserting the value of ℎ from b, we have

d𝜎
d𝑡 =

4
3(𝑡 + (1 − 𝜎(𝑡) + 𝑡2)1/2).

This has the solution 𝜎(𝑡) = 1+ 8
9 𝑡

2, which also fits the initial condition 𝜎(0) = 1. This remarkably
simple solution is not easy to discover,1 which is why we did not ask for it.

Even without knowing the exact solution for 𝜎(𝑡), it should be clear that 𝜎′(0) = 0, and that 𝜎′(𝑡)
is an increasing function, since the ℎ(𝜎(𝑡)−) increases with time. See the picture below, where the
curve 𝑥 = 𝜎(𝑡) is drawn in red, and the characteristics in blue. Note that, at some point – to be
precise, at (𝑡, 𝑥) = ( 34 ,

3
2 ) – the characteristics from the constant initial data at 𝜉 < 0 reach the

characteristic curve, so its speed becomes constant.

𝑥

𝑡

1

1It was found almost by accident, after this problem set was created!
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