

Department of Mathematical Sciences

Examination paper for TMA4305 Partial differential equations

Academic contact during examination: Harald Hanche-Olsen Phone: 73593525/SfB: harald.hanche-olsen@ntnu.no

Examination date: Wednesday 29 November 2017

Examination time (from-to): 09:00-13:00

Permitted examination support material: Code C: One yellow A4-sized sheet of paper stamped by the Department of Mathematical Sciences. On this sheet the student may write whatever is desired. Specified, simple calculator allowed.

Other information: A minor misprint in the original has been corrected (marked in red) in this version.

Language: English Number of pages: 3 Number of pages enclosed: 0

Informasjon om trykking av eksamensoppgave			
Originalen er:			
1-sidig		2-sidig	\boxtimes
sort/hvit	\boxtimes	farger	
skal ha flervalgskjema 🛛			

Checked by:

Date

Signature

Problem 1 This problem uses subscripts for partial derivatives: $u_t = \partial u / \partial t$, etc.

To a C^2 function u solving the wave equation $u_{tt} - u_{xx} = 0$, we associate the energy density $e = \frac{1}{2}(u_t^2 + u_x^2)$, and also the right traveling energy density $e_+ = \frac{1}{4}(u_t - u_x)^2$ and the left traveling energy density $e_- = \frac{1}{4}(u_t + u_x)^2$, so that $e = e_+ + e_-$.

a. Let *u* be a solution to the wave equation for $x \in (0, 1)$. Put

$$E_{\pm}(t) = \int_0^1 e_{\pm}(t, x) \,\mathrm{d}x$$

and show that

$$\frac{\mathrm{d}E_+}{\mathrm{d}t} = e_+(t,0) - e_+(t,1), \quad \frac{\mathrm{d}E_-}{\mathrm{d}t} = e_-(t,1) - e_-(t,0).$$

b. Assume the solution *u* satisfies boundary conditions

$$u_x(t,0) - au(t,0) = 0, \quad u_x(t,1) + bu(t,1) = 0$$

where $a \ge 0$ and $b \ge 0$ are given constants. Show that

$$\int_0^1 e(t,x) \, \mathrm{d}x + \frac{a}{2} u(t,0)^2 + \frac{b}{2} u(t,1)^2$$

is constant, and that the problem

$$u_{tt} - u_{xx} = f(t, x) \text{ for } x \in (0, 1) \text{ and } t > 0$$

$$u(0, x) = g(x) \text{ for } x \in (0, 1)$$

$$u_x - 2au = h_0(t) \text{ for } x = 0 \text{ and } t > 0$$

$$u_x + 2bu = h_1(t) \text{ for } x = 1 \text{ and } t > 0$$

has at most one solution in $C^2((0,\infty) \times (0,1)) \cap C^1([0,\infty) \times [0,1])$ for given functions f, g, h_0 , and h_1 .

Problem 2 Let *u* be a real-valued function satisfying $-\Delta u = \lambda u$ in a bounded domain Ω . It is known that if λ is the smallest eigenvalue of $-\Delta$, then *u* is of one sign: Always positive, or always negative. Show that *u* is not of one sign in Ω otherwise.

Hint: Orthogonality.

Problem 3 Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with piecewise C^1 boundary. Assume that a function $c \in C^1([0, T] \times \overline{\Omega})$ is given, with c > 0 inside Ω and c = 0 on $\partial \Omega$.

a. Show that the initial value problem

$$\frac{\partial u}{\partial t} - \nabla \cdot \left(c(t, \mathbf{x}) \nabla u \right) = 0 \quad \text{in} \ (0, T) \times \Omega, \tag{1}$$

$$u = 0 \quad \text{in } \Omega \text{ for } t = 0, \tag{2}$$

has only the trivial solution u = 0 in $C^2([0, T] \times \overline{\Omega})$.

Hint: Consider $\int_{\Omega} \frac{1}{2} u^2 d^n x$.

b. State the weak maximum principle for the ordinary heat equation $u_t - \Delta u = 0$. Show that it holds for equation (1) as well, where we no longer assume (2).

Hint: Look at $u(t, \mathbf{x}) - \varepsilon t$ where $\varepsilon > 0$, and let $\varepsilon \to 0$.

Problem 4

a. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and assume that $u \in C^4(\Omega) \cap C^2(\overline{\Omega})$ is a non-constant function satifying

$$\Delta(\Delta u) \ge 0 \quad \text{in } \Omega,$$

$$\Delta u \le 0 \quad \text{on } \partial \Omega,$$

$$u \ge 0 \quad \text{on } \partial \Omega.$$

Show that u > 0 in Ω .

Hint: Consider the function $v = \Delta u$ first.

b. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and assume that $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies

$$-\Delta u = u - u^3 \text{ in } \Omega,$$
$$u = \frac{1}{2} \text{ on } \partial \Omega.$$

Prove that $-1 \le u \le 1$ in Ω .

Hint: Assume the opposite, and use a maximum principle.

Problem 5 Let h(t, x) be the depth of water in a river at time *t* and position *x* along the river. After a suitable scaling of the variables, the water depth satisfies the equation

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left(\frac{4}{3} h^{3/2}\right) = 0.$$
(3)

a. Find the characteristics of equation (3) corresponding to the initial condition

$$h(0, x) = \begin{cases} 1 & \text{if } x < 0, \\ 1 - x & \text{if } 0 \le x \le 1, \\ 0 & \text{if } x > 1, \end{cases}$$

and show that the characteristics start colliding immediately near x = 1.

- **b.** The weak solution will develop a discontinuity (shock) which can be described as a curve $x = \sigma(t)$ for $t \ge 0$, with $\sigma(0) = 1$. What is the value of h(t, x) in the region $2t < x < \sigma(t)$?
- **c.** Write up a differential equation satisfied by $\sigma(t)$. You do not need to solve it! Draw a rough sketch showing the characteristics and the shock curve $x = \sigma(t)$.