Problem 1

(a) From Theorem 10.6 we find that the solution reads
\[u(0, x) = \begin{cases}
1, & \text{for } x \leq t/2, \\
0, & \text{for } x > t/2,
\end{cases} \]
using the Rankine–Hugoniot relation with flux function \(q(u) = u^2 / 2 \). Furthermore, the theorem says it is weak solution.

(b) We need to show that
\[0 = \int_0^{\infty} \int_{-\infty}^{\infty} (u \phi_t + \frac{1}{2} u^2 \phi_x) dx \, dt + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx
\]
for all compactly supported test functions \(\phi \). To that end we find
\[
\begin{align*}
\int_0^{\infty} \int_{-\infty}^{\infty} (u \phi_t + \frac{1}{2} u^2 \phi_x) dx \, dt &+ \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&= \int_0^{\infty} \left(\int_{-\infty}^{0} + \int_{0}^{t} + \int_{t}^{\infty} \right) (u \phi_t + \frac{1}{2} u^2 \phi_x) dx \, dt + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&= -\int_{-\infty}^{0} \phi(0, x) dx + \int_0^{\infty} \int_{-\infty}^{0} (u \phi_t + \frac{1}{2} u^2 \phi_x) dx \, dt + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&= -\int_{-\infty}^{0} \phi(0, x) dx + \int_0^{\infty} \int_{-\infty}^{t} (u \phi_t + \frac{1}{2} u^2 \phi_x) dx \, dt + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&\quad + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&= -\int_{-\infty}^{0} \phi(0, x) dx + \int_0^{\infty} \int_{-\infty}^{t} (u \phi_t + \frac{1}{2} u^2 \phi_x) dx \, dt + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&\quad + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&= -\int_{-\infty}^{0} \phi(0, x) dx + \int_0^{\infty} \int_{-\infty}^{t} (u \phi_t + \frac{1}{2} u^2 \phi_x) dx \, dt + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&\quad + \int_{-\infty}^{\infty} u_0(x) \phi(0, x) dx \\
&= 0.
\end{align*}
\]

Here we have first divided the domain of integration according to the definition of \(u \). The integral for \(x < 0 \) can be computed by integrating \(\phi_t \) with respect to time, giving only contribution from \(t = 0 \). The integral for \(x > t \) vanishes since \(u = 0 \) here. Thus we are left with the integral for \(0 < x < t \) in the \(x \)-direction. Here we use that \(u \) satisfies the equation pointwise, and we can add \((u_t + (u^2)_x)/2\) \(\phi = 0 \), and then use Leibniz formula. By applying Gauss’s (or Green’s) theorem we convert this to an integral over the boundary of the domain, with \(n \) denoting the outward unit normal. Here \(T \) is such that \(\phi(t, x) = 0 \) for
all \(t \geq T \) and all \(x \). However, here \(u \) or \(\phi \) vanishes, and thus the integral is zero. We are left with integrals at \(t = 0 \), and using the form of \(u_0 \) also this vanishes.

Problem 2

(a) Let \(\xi = x/\sqrt{t} \). Direction differentiation gives

\[
- \frac{x}{2t^{3/2}} U'(\xi) = \frac{1}{t} U''(\xi),
\]
or

\[
- \frac{\xi}{2} U'(\xi) = U''(\xi).
\]

(b) Introduce \(V = U' \) and integrate

\[V = V_0 e^{-\xi^2/4}. \]

Integrate to get \(U \), thus

\[U(\xi) = V_0 \int_0^\xi e^{-\eta^2/4} d\eta + U_0 = 2V_0 \int_0^{\xi/2} e^{-z^2} dz + U_0 = \sqrt{\pi} V_0 \text{erf}\left(\frac{\xi}{2}\right) + U_0. \]

In terms of \(u \) we find

\[u(t, x) = U(\frac{x}{\sqrt{t}}) = \sqrt{\pi} V_0 \text{erf}\left(\frac{x}{2\sqrt{t}}\right) + U_0. \]

(c) By inserting \(x = 0 \) we find that \(U_0 = 1 \), and by letting \(t \to 0 \) we find that \(V_0 = -1/\sqrt{\pi} \). Thus

\[u(t, x) = - \text{erf}\left(\frac{x}{2\sqrt{t}}\right) + 1. \]

Problem 3a Let \(\phi \) be a function in \(C^\infty_0(\Omega) \) and consider

\[I(v + t\phi) = I(v) + 2t \int_\Omega (\nabla v \cdot \nabla \phi + 5v \phi) \, d^3x + O(t^2). \]

The necessary condition

\[\frac{dI(v + t\phi)}{dt} \bigg|_{t=0} = 0 \]

yields the Euler-Lagrange equation

\[\int_\Omega (\nabla v \cdot \nabla \phi + 5v \phi) \, d^3x \]

in weak form.

Problem 3b. Integrating by parts we get

\[\int_\Omega \phi(\Delta v + v) \, d^3x = 0 \]
for all test-functions. By “the variational lemma” we have pointwise
\[\Delta v = 5v. \]
If \(v > 1 \) at some point, then there is an interior maximum:
\[v(x_0) = \max_{\Omega} v > 1 \]
But this yields the contradiction
\[0 \geq \Delta v(x_0) = 5v(x_0) > 5. \]
If \(v < 0 \) at some point, then there is an interior minimum:
\[0 > v(y_0) = \min_{\Omega} v \]
This yields the contradiction
\[0 \leq \Delta v(y_0) = 5v(y_0) < 0. \]
It follows that \(0 \leq v \leq 1. \)

Problem 4 Differentiate with respect to \(t \) to see that
\[
\frac{d}{dt} \int_{\Omega} w(x, t)^2 \, d^n x = 2 \int_{\Omega} w w_t \, d^n x = 2 \int_{\Omega} w \Delta w \, d^n x
\]
\[= -2 \int_{\Omega} |\nabla w|^2 \, d^n x + \oint w \nabla w \cdot n \, dS = -2 \int_{\Omega} |\nabla w|^2 \, d^n x + 0 \leq 0. \]
Thus the integral is decreasing in \(t \) and the inequality follows. We used Gauss’s theorem (the divergence thm) on
\[\text{div}(w \nabla w) = \nabla w \cdot \nabla w + w \Delta w. \]

Problem 5
We have to verify that
\[\int_{-\infty}^{+\infty} e^{-k|x|} (-\phi''(x) + k^2 \phi(x)) \, dx = 2k \phi(0) \]
for all test functions \(\phi \). Integrations by parts yield
\[- \int_{-\infty}^{0} e^{+kx} \phi''(x) \, dx = -\phi'(0) + k\phi(0) - k^2 \int_{-\infty}^{0} e^{+kx} \phi(x) \, dx \]
\[- \int_{0}^{\infty} e^{-kx} \phi''(x) \, dx = +\phi'(0) + k\phi(0) - k^2 \int_{0}^{\infty} e^{-kx} \phi(x) \, dx. \]
Adding the two previous identities we arrive at the desired identity
\[-\int_{-\infty}^{+\infty} e^{-k|x|} \phi''(x) \, dx = 2k \phi(0) - k^2 \int_{-\infty}^{+\infty} e^{-k|x|} \phi(x) \, dx.\]

We know that a solution of \(-v'' + k^2 v = f(x)\) is given by the convolution
\[v(x) = (\Phi * f)(x) = \frac{1}{2k} \int_{-\infty}^{+\infty} f(y)e^{-k|x-y|} \, dy.\]

Problem 6

(a) We have
\[u_{0,tt} = \sin(x) \cos(t), \quad u_{0,xx} = \sin(x)(\cos(t) - 1),\]
showing that the given function is a solution of the equation.

(b) Consider \(v = u - u_0\). Then \(v\) satisfies
\[v_{tt} - v_{xx} = 0. \quad (1)\]

The initial and boundary conditions yield in the standard manner the solution, using d’Alembert’s formula,
\[v(t, x) = \frac{1}{2} (g(x + t) + g(x - t)) + \frac{1}{2} \int_{x-t}^{x+t} h(z) \, dz \quad (2)\]
where \(g\) and \(h\) are extended to all real arguments by
\[g(-x) = -g(x), h(-x) = -h(x), \quad g(x + 2\pi) = g(x), h(x + 2\pi) = h(x). \quad (3)\]

The solution then reads
\[u(t, x) = v(t, x) + u_0(t, x)\]
\[= \frac{1}{2} (g(x + t) + g(x - t)) + \frac{1}{2} \int_{x-t}^{x+t} h(z) \, dz - \sin(x)(\cos(t) - 1).\]