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More general quasilinear equations
Here we look at the general quasilinear equation in two dimensions:

𝑎𝑢𝑥 + 𝑏𝑢𝑦 = 𝑐, (1)

in which 𝑎, 𝑏, and 𝑐 are really 𝑎(𝑥, 𝑦 , 𝑢(𝑥, 𝑦)), 𝑏(𝑥, 𝑦 , 𝑢(𝑥, 𝑦)), and 𝑐(𝑥, 𝑦 , 𝑢(𝑥, 𝑦)). (It
is the dependence of the coefficients on 𝑢 that makes the equations quasilinear.)

Consider any smooth curve (𝑥(𝜏), 𝑦(𝜏 )). Then, assuming 𝑢 is a classical solution
of (1), we put 𝑧(𝜏 ) = 𝑢(𝑥(𝜏), 𝑦(𝜏 )), and find

𝑧′(𝜏 ) = 𝑥′(𝜏 )𝑢𝑥 + 𝑦 ′(𝜏 )𝑢𝑦

so that if 𝑥′(𝜏 ) = 𝑎 and 𝑦 ′(𝜏 ) = 𝑏, then

𝑧′ = 𝑎𝑢𝑥 + 𝑏𝑢𝑦 = 𝑐.

This all means that (𝑥, 𝑦 , 𝑧) satify the characteristic equations

𝑥′(𝜏 ) = 𝑎(𝑥, 𝑦 , 𝑧), 𝑦 ′(𝜏 ) = 𝑏(𝑥, 𝑦 , 𝑧), 𝑧′(𝜏 ) = 𝑐(𝑥, 𝑦 , 𝑧). (2)

To summarize so far: Assume that 𝑢 is a classical solution of (1). Through each point
in the graph of 𝑢,

graph(𝑢) = { (𝑥, 𝑦 , 𝑧) | 𝑧 = 𝑢(𝑥, 𝑦) },

there passes a characteristic curve (𝑥(𝜏), 𝑦(𝜏 ), 𝑧(𝜏 )) solving (2). Moreover, each such
characteristic curve will lie within the graph of 𝑢.

The solution strategy for (1) can now be explained: Since the graph of a classical
solution is a union of characteristic curves, we try to construct solutions by putting
together characteristic curves.

The graph of 𝑢 will be two-dimensional, and a characteristic curve is one-
dimensional; so it makes sense to use another variable to keep track of the char-
acteristic curves.

In otherwords, to construct a solution, we look for three functions 𝑥(𝜎 , 𝜏 ), 𝑦(𝜎 , 𝜏 ),
𝑧(𝜎 , 𝜏 ) which parametrize a characteristic curve as function of 𝜏 for each 𝜎. In other
words, they should satisfy

𝑥𝜏 = 𝑎, 𝑦𝜏 = 𝑏, 𝑧𝜏 = 𝑐
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where, as always, 𝑎, 𝑏, and 𝑐 are considered functions of 𝑥, 𝑦, and 𝑧.1 Additionally,
we assume that these are 𝐶1 functions, and that (𝑥(𝜎 , 𝜏 ), 𝑦(𝜎 , 𝜏 )) has a 𝐶1 inverse,
mapping (𝑥, 𝑦) to (𝜎 , 𝜏 ). Then we can define 𝑢 by

𝑢(𝑥(𝜎 , 𝜏 ), 𝑦(𝜎 , 𝜏 )) = 𝑧(𝜎 , 𝜏 ).

Differentiating this equation with respect to 𝜏 yields 𝑥𝜏𝑢𝑥 + 𝑦𝜏𝑢𝑦 = 𝑧𝜏, which is the
same as (1).

To make this construction more concrete, putting 𝜏 = 0 yields a parametric curve
𝛾 in the (𝑥, 𝑦)-plane: (𝑥(𝜎 , 0), 𝑦(𝜎 , 0)), or, if we add a coordinate, a curve Γ in graph(𝑢)
parametrized as (𝑥(𝜎 , 0), 𝑦(𝜎 , 0), 𝑧(𝜎 , 0)). The requirement that (𝑥(𝜎 , 𝜏 ), 𝑦(𝜎 , 𝜏 )) has
a 𝐶1 inverse implies that the matrix ( 𝑥𝜎 𝑥𝜏𝑦𝜎 𝑦𝜏 ) is non-singular. At 𝜏 = 0 this simply
means that Γ is not tangent to the characteristic curves. We refer to this as the non-
characteristic condition.

We now see what is a natural condition to impose in order to obtain a unique
solution to (1): Namely, given a curve 𝛾 in the (𝑥, 𝑦)-plane, and a function 𝑔 on 𝛾,
assume that the curve Γ given by points (𝜉 , 𝜂, 𝜁 ) with (𝜉 , 𝜂) on 𝛾 and 𝜁 = 𝑔(𝜉 , 𝜂)
satisfies the non-characteristic condition. Then (1) has a solution 𝑢 satisfying the
condition

𝑢 = 𝑔 on 𝛾. (3)

This solution will exist on a neighbourhood of 𝛾, and be unique there. (Though we
must be careful with any end points of 𝛾: They should not be points on 𝛾 themselves,
as we would then be obliged to extend the solution beyond the end of 𝛾.)

A problem of the form (1) with “initial” data (3) is called a Cauchy problem for (1). More
generally, a Cauchy problem for a PDE is the problem of solving the PDE along with certain
conditions along a curve, or more generally a hypersurface. Often, as is the case here, the
PDE more or less dictates the proper form of the Cauchy problem after some analysis.

1Well, they were functions of 𝑥, 𝑦, and 𝑢, right? But in this solution, we should think of 𝑢 and 𝑧 as being
the same. We write 𝑢 when we emphasize the solution 𝑢(𝜏 , 𝑥), but 𝑧 when we think of the characteristic
curves, as in 𝑧(𝜏 ) or 𝑧(𝜎 , 𝜏 ). After you have gained some experience, you may find it easier to forget about
𝑧 and just write 𝑢. But this may be too confusing in the beginning.
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The general quasilinear equation in higher dimensions
We can do the exact same procedure, with the same arguments, in 𝑛 dimensions as
in the 2-dimensional case. Here we summarize the construction very briefly.

A general quasilinear equation then takes the form

𝒂(𝒙, 𝑢(𝒙)) ⋅ ∇𝑢(𝒙) = 𝑐(𝒙, 𝑢(𝒙)), 𝒙 ∈ ℝ𝑛, (4)

with given functions 𝒂 and 𝑐.
The characteristic equations become

𝒙′(𝜏 ) = 𝒂(𝒙(𝜏), 𝑧(𝜏 )), 𝑧′(𝜏 ) = 𝑐(𝒙(𝜏), 𝑧(𝜏 )),

or written in a more compact form:

𝒙′ = 𝒂(𝒙, 𝑧), 𝑧′ = 𝑐(𝒙, 𝑧). (5)

Assume now that we are given the PDE (4) with the extra condition

𝑢(𝝃 ) = 𝑔(𝝃 ), 𝝃 ∈ 𝛾 , (6)

where 𝛾 ⊂ ℝ𝑛 is a hypersurface, i.e., a surface of dimension 𝑛 − 1. The non-
characteristic condition now says that 𝒂(𝝃 , 𝑔(𝝃 )) is not tangent to 𝛾 for any 𝜉 ∈ 𝛾.

For any 𝝃 ∈ 𝛾, standard ODE theory guarantees the existence of a solution of (5)
satisfying 𝒙(0) = 𝝃 and 𝑧(0) = 𝑔(𝝃 ). Write (𝒙(𝜏 , 𝝃 ), 𝑧(𝜏 , 𝝃 )) for this solution, and
define

𝑢(𝒙(𝜏 , 𝝃)) = 𝑧(𝒙(𝜏 , 𝝃)), 𝜉 ∈ 𝛾 ,

where again, we can show that this is well defined (for 𝜏 sufficiently close to 0) by
using the inverse function theorem. Further, the 𝑛 + 1 variables 𝑡, 𝝃 are essentially
only 𝑛 variables, because 𝛾 is (𝑛 − 1)-dimensional. The proof that this produces a
classical solution is similar to the 2-dimensional case.
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