First order quasilinear equations

Harald Hanche-Olsen

More general quasilinear equations

Here we look at the general quasilinear equation in two dimensions:

$$
\begin{equation*}
a u_{x}+b u_{y}=c, \tag{1}
\end{equation*}
$$

in which a, b, and c are really $a(x, y, u(x, y)), b(x, y, u(x, y))$, and $c(x, y, u(x, y))$. (It is the dependence of the coefficients on u that makes the equations quasilinear.)

Consider any smooth curve $(x(\tau), y(\tau))$. Then, assuming u is a classical solution of (1), we put $z(\tau)=u(x(\tau), y(\tau))$, and find

$$
z^{\prime}(\tau)=x^{\prime}(\tau) u_{x}+y^{\prime}(\tau) u_{y}
$$

so that if $x^{\prime}(\tau)=a$ and $y^{\prime}(\tau)=b$, then

$$
z^{\prime}=a u_{x}+b u_{y}=c
$$

This all means that (x, y, z) satify the characteristic equations

$$
\begin{equation*}
x^{\prime}(\tau)=a(x, y, z), \quad y^{\prime}(\tau)=b(x, y, z), \quad z^{\prime}(\tau)=c(x, y, z) . \tag{2}
\end{equation*}
$$

To summarize so far: Assume that u is a classical solution of (1). Through each point in the graph of u,

$$
\operatorname{graph}(u)=\{(x, y, z) \mid z=u(x, y)\}
$$

there passes a characteristic curve $(x(\tau), y(\tau), z(\tau))$ solving (2). Moreover, each such characteristic curve will lie within the graph of u.

The solution strategy for (1) can now be explained: Since the graph of a classical solution is a union of characteristic curves, we try to construct solutions by putting together characteristic curves.

The graph of u will be two-dimensional, and a characteristic curve is onedimensional; so it makes sense to use another variable to keep track of the characteristic curves.

In other words, to construct a solution, we look for three functions $x(\sigma, \tau), y(\sigma, \tau)$, $z(\sigma, \tau)$ which parametrize a characteristic curve as function of τ for each σ. In other words, they should satisfy

$$
x_{\tau}=a, \quad y_{\tau}=b, \quad z_{\tau}=c
$$

where, as always, a, b, and c are considered functions of x, y, and $z .{ }^{1}$ Additionally, we assume that these are C^{1} functions, and that $(x(\sigma, \tau), y(\sigma, \tau))$ has a C^{1} inverse, mapping (x, y) to (σ, τ). Then we can define u by

$$
u(x(\sigma, \tau), y(\sigma, \tau))=z(\sigma, \tau) .
$$

Differentiating this equation with respect to τ yields $x_{\tau} u_{x}+y_{\tau} u_{y}=z_{\tau}$, which is the same as (1).

To make this construction more concrete, putting $\tau=0$ yields a parametric curve γ in the (x, y)-plane: $(x(\sigma, 0), y(\sigma, 0))$, or, if we add a coordinate, a curve Γ in $\operatorname{graph}(u)$ parametrized as $(x(\sigma, 0), y(\sigma, 0), z(\sigma, 0))$. The requirement that $(x(\sigma, \tau), y(\sigma, \tau))$ has a C^{1} inverse implies that the matrix $\left(\begin{array}{l}x_{\sigma} x_{\tau} \\ y_{\sigma} \\ y_{\tau}\end{array}\right)$ is non-singular. At $\tau=0$ this simply means that Γ is not tangent to the characteristic curves. We refer to this as the noncharacteristic condition.

We now see what is a natural condition to impose in order to obtain a unique solution to (1): Namely, given a curve γ in the (x, y)-plane, and a function g on γ, assume that the curve Γ given by points (ξ, η, ζ) with (ξ, η) on γ and $\zeta=g(\xi, \eta)$ satisfies the non-characteristic condition. Then (1) has a solution u satisfying the condition

$$
\begin{equation*}
u=g \text { on } \gamma . \tag{3}
\end{equation*}
$$

This solution will exist on a neighbourhood of γ, and be unique there. (Though we must be careful with any end points of γ : They should not be points on γ themselves, as we would then be obliged to extend the solution beyond the end of γ.)

A problem of the form (1) with "initial" data (3) is called a Cauchy problem for (1). More generally, a Cauchy problem for a PDE is the problem of solving the PDE along with certain conditions along a curve, or more generally a hypersurface. Often, as is the case here, the PDE more or less dictates the proper form of the Cauchy problem after some analysis.

[^0]
The general quasilinear equation in higher dimensions

We can do the exact same procedure, with the same arguments, in n dimensions as in the 2-dimensional case. Here we summarize the construction very briefly.

A general quasilinear equation then takes the form

$$
\begin{equation*}
a(x, u(x)) \cdot \nabla u(x)=c(x, u(x)), \quad x \in \mathbb{R}^{n}, \tag{4}
\end{equation*}
$$

with given functions \boldsymbol{a} and c.
The characteristic equations become

$$
x^{\prime}(\tau)=a(x(\tau), z(\tau)), \quad z^{\prime}(\tau)=c(x(\tau), z(\tau)),
$$

or written in a more compact form:

$$
\begin{equation*}
x^{\prime}=a(x, z), \quad z^{\prime}=c(x, z) . \tag{5}
\end{equation*}
$$

Assume now that we are given the PDE (4) with the extra condition

$$
\begin{equation*}
u(\xi)=g(\xi), \quad \xi \in \gamma, \tag{6}
\end{equation*}
$$

where $\gamma \subset \mathbb{R}^{n}$ is a hypersurface, i.e., a surface of dimension $n-1$. The noncharacteristic condition now says that $\boldsymbol{a}(\xi, g(\xi))$ is not tangent to γ for any $\xi \in \gamma$.

For any $\xi \in \gamma$, standard ODE theory guarantees the existence of a solution of (5) satisfying $x(0)=\xi$ and $z(0)=g(\xi)$. Write $(x(\tau, \xi), z(\tau, \xi))$ for this solution, and define

$$
u(x(\tau, \xi))=z(x(\tau, \xi)), \quad \xi \in \gamma
$$

where again, we can show that this is well defined (for τ sufficiently close to 0) by using the inverse function theorem. Further, the $n+1$ variables t, ξ are essentially only n variables, because γ is $(n-1)$-dimensional. The proof that this produces a classical solution is similar to the 2 -dimensional case.

[^0]: ${ }^{1}$ Well, they were functions of x, y, and u, right? But in this solution, we should think of u and z as being the same. We write u when we emphasize the solution $u(\tau, x)$, but z when we think of the characteristic curves, as in $z(\tau)$ or $z(\sigma, \tau)$. After you have gained some experience, you may find it easier to forget about z and just write u. But this may be too confusing in the beginning.

