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Weak maximum principle for the heat equation
Harald Hanche-Olsen

In this note, we consider the standard heat equation

𝑢𝑡 − Δ𝑢 = 0 in Ω𝑇

where Ω ⊂ ℝ𝑛 is a bounded region, Ω𝑇 = (0, 𝑇 ) × Ω with 𝑇 > 0, and

𝑢 ∈ 𝐶(Ω𝑇) ∩ 𝐶2(Ω𝑇).

We think of Ω𝑇 as an open cylinder with base Ω and height 𝑇. Its closure is a closed
cylinder: Ω𝑇 = [0, 𝑇 ] × Ω.

Definition. The parabolic boundary of Ω𝑇 is the set

Γ = ({0} × Ω) ∪ ([0, 𝑇 ] × ∂Ω).

Clearly, Γ is contained in the normal boundary ∂Ω𝑇 ; the difference is

∂Ω𝑇 ⧵ Γ = {𝑇 } × Ω.

We may call {𝑇 } × Ω the final boundary of Ω𝑇 (nonstandard nomenclature).

Observation. If a 𝐶2 function 𝑣 has a maximum at some point in Ω𝑇, then 𝑣𝑡 = 0
and Δ𝑣 ≤ 0 at that point, so we get 𝑣𝑡 − Δ𝑣 ≥ 0 there. Moreover, this holds at the
final boundary as well, the only difference being that there, we can only conclude
𝑣𝑡 ≥ 0 and Δ𝑣 ≤ 0. In other words,

𝑣𝑡 − Δ𝑣 ≥ 0 at any maximum in Ω𝑇 ⧵ Γ.

We must face a minor technical glitch: The above statement requires that 𝑣 is 𝐶2
up to and including the final boundary of Ω𝑇. This complicates the proof of the
following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume that 𝑢 ∈ 𝐶(Ω𝑇) ∩ 𝐶2(Ω𝑇) sat-
isfies

𝑢𝑡 − Δ𝑢 ≤ 0.

Then 𝑢(𝑡, 𝒙) ≤ maxΓ 𝑢 for all (𝑡, 𝒙) ∈ Ω𝑇. In other words, 𝑢 achieves its maximum on
the parabolic boundary.
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Proof. First, to deal with the “minor technical glitch” mentioned above, we shall
strengthen the assumptions somewhat, and assume that 𝑢 ∈ 𝐶2((0, 𝑇 ] × Ω). We will
remove this extra assumption at the end.

Now let 𝜀 > 0, and put 𝑣(𝑡, 𝒙) = 𝑢(𝑡, 𝒙) − 𝜀𝑡. Then 𝑣𝑡 − Δ𝑣 ≤ −𝜀 < 0, and so it fol-
lows immediately from the Observation above that 𝑣 cannot achieve its maximum
anywhere other than at Γ. On the other hand, since 𝑣 is continuous and Ω𝑇 is com-
pact, 𝑣 does have a maximum in Ω𝑇, and so we must conclude that 𝑣(𝑡, 𝒙) ≤ maxΓ 𝑣
for any (𝑡, 𝒙) ∈ Ω𝑇. But then 𝑢(𝑡, 𝒙) = 𝑣(𝑡, 𝒙) + 𝜀𝑡 ≤ maxΓ 𝑣 + 𝜀𝑇 ≤ maxΓ 𝑢 + 𝜀𝑇.
Since this holds for any 𝜀 > 0, it finally follows that 𝑢(𝑡, 𝒙) ≤ maxΓ 𝑢, and the proof
is complete, with the strengthened assumptions.

We now drop the requirement that 𝑢 ∈ 𝐶2((0, 𝑇 ] × Ω). Given any point (𝑡, 𝒙) ∈ Ω𝑇,
pick some 𝑇 ′ with 𝑡 < 𝑇 ′ < 𝑇. Then 𝑢 ∈ 𝐶2((0, 𝑇 ′] × Ω), so the first part shows that
𝑢(𝑡, 𝒙) ≤ maxΓ𝑇 ′ 𝑢. Here Γ𝑇 ′ is tbe parabolic boundary of Ω𝑇 ′ . But Γ𝑇 ′ ⊂ Γ, so we
also have 𝑢(𝑡, 𝒙) ≤ maxΓ 𝑢. Finally, this also holds for 𝑡 = 𝑇, since 𝑢 is continuous on
Ω𝑇. This, at last, completes the proof.

It should come as no surprise that there is also aminimum principle. It is proved
by replacing 𝑢 by −𝑢 in Theorem 1.

Corollary 2 (The weak minimum principle). Assume that 𝑢 ∈ 𝐶(Ω𝑇) ∩ 𝐶2(Ω𝑇)
satisfies

𝑢𝑡 − Δ𝑢 ≥ 0.

Then 𝑢(𝑡, 𝒙) ≥ minΓ 𝑢 for all (𝑡, 𝒙) ∈ Ω𝑇. In other words, 𝑢 achieves its minimum on
the parabolic boundary.

We will mostly be concerned with solutions of the heat equation 𝑢𝑡 − Δ𝑢 = 0,
and for these, both the maximum principle and the minimum principle can be used.
But we may also wish to study inhomogeneous equations 𝑢𝑡 − Δ𝑢 = 𝑓, and if 𝑓 has
a definite sign, one or the other principle will apply.

Corollary 3 (Uniqueness for the heat equation). There exists at most one solution
𝑢 ∈ 𝐶(Ω𝑇) ∩ 𝐶2(Ω𝑇) to the problem

𝑢𝑡 − Δ𝑢 = 𝑓 in Ω𝑇,
𝑢 = 𝑔 on Γ.

Here, 𝑓 and 𝑔 are given functions on Ω𝑇 and Γ, respectively. (Thus 𝑔 combines initial
values and boundary values in one function.)

Proof. Let 𝑢 be the difference between two solutions to this problem: Then 𝑢 solves
the same problem, but with 𝑓 = 0 and 𝑔 = 0. Thus 𝑢 achieves both its minimum and
maximum on Γ, but 𝑢 = 0 there, so 𝑢 = 0 everywhere.
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The following corollary is proved in essentially the same way, by applying the
minimum and maximum principles to 𝑢1 − 𝑢2. Note that it immediately implies the
preceding corollary by taking 𝑔1 = 𝑔2.

Corollary 4 (Continuous dependence on initial data). Let 𝑢1 and 𝑢2 satisfy

∂𝑡𝑢𝑖 − Δ𝑢𝑖 = 𝑓 in Ω𝑇,
𝑢𝑖 = 𝑔𝑖 on Γ,

} for 𝑖 = 1, 2.

Then |𝑢1 − 𝑢2| ≤ maxΓ|𝑔1 − 𝑔2|.

Unbounded domains: Without further assumptions, the maximum principle is
false on unbounded domains. This is easiest to see in two dimensions:

Example. With Ω = ℝ × (0, 𝜋), define 𝑢(𝑡, 𝑥, 𝑦) = 𝑒𝑥 sin 𝑦 for 𝑡 > 0 and (𝑥, 𝑦) ∈ Ω
(note the lack of time dependence). Then 𝑢𝑡 − Δ𝑢 = 0 and 𝑢 = 0 on ∂Ω, yet 𝑢 is not
identically zero.

It is possible, but quite a bit harder, to create a similar example with Ω = ℝ. We
describe a famous example by Tikhonov in the appendix at the end of this note.
However, with some extra growth condition on the solution, we have the following
result:

Theorem 5 (The weak maximum principle on ℝ𝑛). Assume that 𝑢 ∈ 𝐶([0, 𝑇 ] ×ℝ𝑛) ∩
𝐶2((0, 𝑇 ) × ℝ𝑛) solves 𝑢𝑡 − Δ𝑢 = 0 in (0, 𝑇 ) × ℝ𝑛 with initial data 𝑢(0, 𝒙) = 𝑔(𝒙). If
supℝ𝑛 𝑔 = 𝑀 < ∞, and if

𝑢(𝑡, 𝒙) ≤ 𝐴𝑒𝑎|𝒙|
2

(1)

for all (𝑡, 𝒙) and constants 𝐴 and 𝑎 > 0, then 𝑢(𝑡, 𝒙) ≤ 𝑀 for all (𝑡, 𝒙) ∈ [0, 𝑇 ] × ℝ𝑛.

Proof. Inspired by the heat kernel, we define the function 𝐵 by

𝐵(𝑡, 𝒙) = 𝑡−𝑛/2𝑒|𝒙|
2/4𝑡 for 𝑡 > 0 and 𝒙 ∈ ℝ𝑛.

A straightforward calculation shows that 𝐵 satisfies 𝐵𝑡 + Δ𝐵 = 0 (the backward
heat equation). Note that 𝐵 is a strictly decreasing function of 𝑡 for fixed 𝒙, and that
𝐵(𝑡, 𝒙) ≥ 𝑡−𝑛/2 → ∞ when 𝑡 → 0.

Now let 𝜀 > 0 and define

𝑣(𝑡, 𝒙) = 𝑢(𝑡, 𝒙) − 𝜀𝐵(𝑇 − 𝑡, 𝒙).

Then 𝑣𝑡 − Δ𝑣 = 0. We shall apply the maximum principle to the ball 𝐵𝑅(𝟎) for some
(large) 𝑅. Clearly, 𝑣(0, 𝒙) < 𝑀 for all 𝒙. Further, for |𝒙| = 𝑅 and 0 ≤ 𝑡 < 𝑇, we find

𝑣(𝑡, 𝒙) < 𝐴𝑒𝑎𝑅
2
− 𝜀𝑇−𝑛/2𝑒𝑅

2/4𝑇 = (𝐴𝑒(𝑎−1/4𝑇 )𝑅
2
− 𝜀𝑇−𝑛/2)𝑒𝑅

2/4𝑇 < 𝑀
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provided 𝑇 < 4𝑎 and 𝑅 is large enough (depending on 𝜀; and notice that 𝑀 may be
negative). In particular, if 𝑅 is chosen big enough, 𝑣(𝑡, 𝒙) ≤ 𝑀 whenever (𝑡, 𝒙) ∈
(0, 𝑇 ) × ∂𝐵(𝟎, 𝑅). Therefore, 𝑣(𝑡, 𝒙) ≤ 𝑀 for (𝑡, 𝒙) ∈ (0, 𝑇 ) × 𝐵(𝟎, 𝑅). Since 𝑅 can be as
big as we please, this holds for all 𝒙 ∈ ℝ𝑛. Nowwe get 𝑢(𝑡, 𝒙) = 𝑣(𝑡, 𝒙)+𝜀𝐵(𝑇 −𝑡, 𝒙) ≤
𝑀 + 𝜀𝐵(𝑇 − 𝑡, 𝒙). Letting 𝜀 → 0, we conclude that 𝑢(𝑡, 𝒙) ≤ 𝑀.

If 𝑇 ≥ 4𝑎, we can use this result repeatedly, first on [0, 𝑇 ′], then on [𝑇 ′, 2𝑇 ′]
(noting that after the first step we know that 𝑢(𝑇 ′, 𝒙) ≤ 𝑀 ), and so forth, where
𝑇 ′ < 4𝑎.

Just as for bounded domains, we can now derive a weak minimum principle, a
uniqueness result, and continuous dependence of initial data for the heat equation
on (0, 𝑇 ) × ℝ𝑛. We just need to add a growth condition like (1) on the solution. The
details are left to the reader.

Note that our example above with Ω = (0, 𝜋) × ℝ satisfies the growth condition
(1), showing that we would need a tighter condition to get a maximum principle on
that domain.

For the exercises below, we return to bounded domains Ω.

Exercise 1 (Continuous dependence on data, improved). Assume that 𝑢1 and 𝑢2
satisfy

∂𝑡𝑢𝑖 − Δ𝑢𝑖 = 𝑓𝑖 in Ω𝑇,
𝑢𝑖 = 𝑔𝑖 on Γ,

} for 𝑖 = 1, 2.

Let 𝜑 = supΩ𝑇
|𝑓1 − 𝑓2| and 𝛾 = maxΓ|𝑔1 − 𝑔2|, and show that |𝑢1 − 𝑢2| ≤ 𝛾 + 𝜑𝑇.

Note that for any 𝑡, we can pick 𝑇 = 𝑡, so we really get |𝑢1 − 𝑢2| ≤ 𝛾 + 𝜑𝑡.
Hint : Apply the maximum principle to 𝑢1 − 𝑢2 − 𝜑𝑡 and 𝑢2 − 𝑢1 − 𝜑𝑡.

Exercise 2. Show that the maximum (and minimum) principle continues to hold if
𝑢𝑡 − Δ𝑢 is replaced by

𝑢𝑡 − Δ𝑢 + 𝑏(∇𝑢),

provided the continuous function 𝑏 satisfies 𝑏(𝟎) = 0. (For a simple and common
example, let 𝑏(∇𝑢) = 𝒃 ⋅ ∇𝑢.)

Exercise 3. Show that the maximum (and minimum) principle continues to hold if
𝑢𝑡 − Δ𝑢 is replaced by the more general

𝑢𝑡 − ∇ ⋅ (𝐴∇𝑢)

where the (constant) real 𝑛 × 𝑛 matrix 𝐴 is symmetric and positive definite.
Here are some ingredients for a proof:
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• The Hessian of 𝑢 is defined to be the (symmetric!) 𝑛 × 𝑛matrix H𝑢with entries
𝑢𝑥𝑖𝑥𝑗 . At an interior maximum point, H𝑢 is negative semidefinite, i.e., 𝒚𝑇H𝒚 ≤
0 for all 𝒚 ∈ ℝ𝑛. (Short proof: Take the second derivative of 𝑢(𝒙 + 𝑠𝒚) with
respect to 𝑠 where 𝑥 is a maximum point, and put 𝑠 = 0.)

• The Frobenius inner product of two real matrices 𝐴 and 𝐵 is

⟨𝐴, 𝐵⟩F =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑗𝑏𝑖𝑗 = tr(𝐴𝑇𝐵).

It turns out that
∇ ⋅ (𝐴∇𝑢) = ⟨𝐴,H𝑢⟩F.

• It is known that if 𝐴 and 𝐵 are positive semidefinite, then ⟨𝐴, 𝐵⟩F ≥ 0. (Short
proof: Since 𝐴 is symmetric, we can write ⟨𝐴, 𝐵⟩F = tr(𝐴𝐵). 𝐴 will have a
positive semidefinite square root 𝐴1/2. A standard result on the trace gives
tr(𝐴𝐵) = tr(𝐴1/2𝐴1/2𝐵) = tr(𝐴1/2𝐵𝐴1/2), but 𝐴1/2𝐵𝐴1/2 is positive semidef-
inite, and such matrices have nonnegative trace.)

Remark. In many PDE texts, the term ∇ ⋅ (𝐴∇𝑢) is written out in detail as

∇ ⋅ (𝐴∇𝑢) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑥𝑗 .

Pedantically speaking, considering the order in which derivatives are taken, that should be

∇ ⋅ (𝐴∇𝑢) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑗𝑥𝑖 ,

but this makes no difference, due to symmetry.

Combining the previous two exercises leads to the maximum/minimum principles for the
operator

𝑢𝑡 − ∇ ⋅ (𝐴∇𝑢) + 𝑏(∇𝑢),

but it seemed easier to handle the two extensions separately.
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Appendix: Tikhonov’s example. Andrey Tikhonov (Андре́й Ти́хонов, 1906–
1993) produced an example of a non-zero solution to the heat equation on the real
line, with zero initial data. His solution had the form

𝑢(𝑡, 𝑥) =
∞
∑
𝑛=0

𝑔𝑛(𝑡)𝑥𝑛.

Then

𝑢𝑡 =
∞
∑
𝑛=0

𝑔′𝑛(𝑡)𝑥𝑛,

𝑢𝑥𝑥 =
∞
∑
𝑛=0

(𝑛 + 2)(𝑛 + 1)𝑔𝑛+2(𝑡)𝑥𝑛,

so we must require

𝑔𝑛+2(𝑡) =
𝑔′𝑛(𝑡)

(𝑛 + 2)(𝑛 + 1)
.

Tikhonov chose 𝑔1(𝑡) = 0, and hence 𝑔𝑛(𝑡) = 0 for all odd 𝑛. He also chose 𝑔0(𝑡) =
𝑔(𝑡) = 𝑒−𝑡

−𝑎
for some 𝑎 > 0. From the above recurrence we now conclude that

𝑢(𝑡, 𝑥) =
∞
∑
𝑘=0

𝑔(2𝑘)(𝑡)
(2𝑘)!

𝑥2𝑘.

It is apparent that 𝑔(2𝑘)(𝑡) equals 𝑒−𝑡
−𝑎
times some linear combination of powers of 𝑡.

Because 𝑎 > 0, the resulting expression has the limit 0 as 𝑡 → 0 (from above). Thus
also lim𝑡→0 𝑢(𝑡, 𝑥) = 0 for all 𝑥.

All of the above requires that the series converge! (Series in plural: That for 𝑢
itself, and the involved derivatives.) This is the only hard part. But it is quite hard;
it requires a careful choice of the constant 𝑎, and one needs to derive a good upper
bound for |𝑔(2𝑘)(𝑡)|. We shall not pursue this further.
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