Weak maximum principle for the heat equation

Harald Hanche-Olsen

In this note, we consider the standard heat equation

$$
u_{t}-\Delta u=0 \quad \text { in } \Omega_{T}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded region, $\Omega_{T}=(0, T) \times \Omega$ with $T>0$, and

$$
u \in C\left(\overline{\Omega_{T}}\right) \cap C^{2}\left(\Omega_{T}\right)
$$

We think of Ω_{T} as an open cylinder with base Ω and height T. Its closure is a closed cylinder: $\overline{\Omega_{T}}=[0, T] \times \bar{\Omega}$.

Definition. The parabolic boundary of Ω_{T} is the set

$$
\Gamma=(\{0\} \times \bar{\Omega}) \cup([0, T] \times \partial \Omega) .
$$

Clearly, Γ is contained in the normal boundary $\partial \Omega_{T}$; the difference is

$$
\partial \Omega_{T} \backslash \Gamma=\{T\} \times \Omega
$$

We may call $\{T\} \times \Omega$ the final boundary of Ω_{T} (nonstandard nomenclature).
Observation. If a C^{2} function v has a maximum at some point in Ω_{T}, then $v_{t}=0$ and $\Delta v \leq 0$ at that point, so we get $v_{t}-\Delta v \geq 0$ there. Moreover, this holds at the final boundary as well, the only difference being that there, we can only conclude $v_{t} \geq 0$ and $\Delta v \leq 0$. In other words,

$$
v_{t}-\Delta v \geq 0 \quad \text { at any maximum in } \overline{\Omega_{T}} \backslash \Gamma .
$$

We must face a minor technical glitch: The above statement requires that v is C^{2} up to and including the final boundary of Ω_{T}. This complicates the proof of the following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume that $u \in C\left(\overline{\Omega_{T}}\right) \cap C^{2}\left(\Omega_{T}\right)$ satisfies

$$
u_{t}-\Delta u \leq 0
$$

Then $u(t, x) \leq \max _{\Gamma} u$ for all $(t, x) \in \overline{\Omega_{T}}$. In other words, u achieves its maximum on the parabolic boundary.

Proof. First, to deal with the "minor technical glitch" mentioned above, we shall strengthen the assumptions somewhat, and assume that $u \in C^{2}((0, T] \times \Omega)$. We will remove this extra assumption at the end.

Now let $\varepsilon>0$, and put $v(t, x)=u(t, x)-\varepsilon t$. Then $v_{t}-\Delta v \leq-\varepsilon<0$, and so it follows immediately from the Observation above that v cannot achieve its maximum anywhere other than at Γ. On the other hand, since v is continuous and $\overline{\Omega_{T}}$ is compact, v does have a maximum in $\overline{\Omega_{T}}$, and so we must conclude that $v(t, x) \leq \max _{\Gamma} v$ for any $(t, x) \in \overline{\Omega_{T}}$. But then $u(t, x)=v(t, x)+\varepsilon t \leq \max _{\Gamma} v+\varepsilon T \leq \max _{\Gamma} u+\varepsilon T$. Since this holds for any $\varepsilon>0$, it finally follows that $u(t, x) \leq \max _{\Gamma} u$, and the proof is complete, with the strengthened assumptions.
We now drop the requirement that $u \in C^{2}((0, T] \times \Omega)$. Given any point $(t, x) \in \Omega_{T}$, pick some T^{\prime} with $t<T^{\prime}<T$. Then $u \in C^{2}\left(\left(0, T^{\prime}\right] \times \Omega\right)$, so the first part shows that $u(t, x) \leq \max _{\Gamma_{T^{\prime}}} u$. Here $\Gamma_{T^{\prime}}$ is tbe parabolic boundary of $\Omega_{T^{\prime}}$. But $\Gamma_{T^{\prime}} \subset \Gamma$, so we also have $u(t, x) \leq \max _{\Gamma} u$. Finally, this also holds for $t=T$, since u is continuous on $\overline{\Omega_{T}}$. This, at last, completes the proof.

It should come as no surprise that there is also a minimum principle. It is proved by replacing u by $-u$ in Theorem 1.

Corollary 2 (The weak minimum principle). Assume that $u \in C\left(\overline{\Omega_{T}}\right) \cap C^{2}\left(\Omega_{T}\right)$ satisfies

$$
u_{t}-\Delta u \geq 0
$$

Then $u(t, x) \geq \min _{\Gamma} u$ for all $(t, x) \in \overline{\Omega_{T}}$. In other words, u achieves its minimum on the parabolic boundary.

We will mostly be concerned with solutions of the heat equation $u_{t}-\Delta u=0$, and for these, both the maximum principle and the minimum principle can be used. But we may also wish to study inhomogeneous equations $u_{t}-\Delta u=f$, and if f has a definite sign, one or the other principle will apply.

Corollary 3 (Uniqueness for the heat equation). There exists at most one solution $u \in C\left(\overline{\Omega_{T}}\right) \cap C^{2}\left(\Omega_{T}\right)$ to the problem

$$
\begin{aligned}
& u_{t}-\Delta u=f \text { in } \Omega_{T} \\
& u=g \\
& \text { on } \Gamma
\end{aligned}
$$

Here, f and g are given functions on Ω_{T} and Γ, respectively. (Thus g combines initial values and boundary values in one function.)

Proof. Let u be the difference between two solutions to this problem: Then u solves the same problem, but with $f=0$ and $g=0$. Thus u achieves both its minimum and maximum on Γ, but $u=0$ there, so $u=0$ everywhere.

The following corollary is proved in essentially the same way, by applying the minimum and maximum principles to $u_{1}-u_{2}$. Note that it immediately implies the preceding corollary by taking $g_{1}=g_{2}$.

Corollary 4 (Continuous dependence on initial data). Let u_{1} and u_{2} satisfy

$$
\left.\begin{array}{rlrl}
\partial_{t} u_{i}-\Delta u_{i} & =f & & \text { in } \Omega_{T}, \\
u_{i} & =g_{i} & & \text { on } \Gamma,
\end{array}\right\} \quad \text { for } i=1,2 .
$$

Then $\left|u_{1}-u_{2}\right| \leq \max _{\Gamma}\left|g_{1}-g_{2}\right|$.

Unbounded domains: Without further assumptions, the maximum principle is false on unbounded domains. This is easiest to see in two dimensions:

Example. With $\Omega=\mathbb{R} \times(0, \pi)$, define $u(t, x, y)=e^{x} \sin y$ for $t>0$ and $(x, y) \in \Omega$ (note the lack of time dependence). Then $u_{t}-\Delta u=0$ and $u=0$ on $\partial \Omega$, yet u is not identically zero.

It is possible, but quite a bit harder, to create a similar example with $\Omega=\mathbb{R}$. We describe a famous example by Tikhonov in the appendix at the end of this note. However, with some extra growth condition on the solution, we have the following result:

Theorem 5 (The weak maximum principle on \mathbb{R}^{n}). Assume that $u \in C\left([0, T] \times \mathbb{R}^{n}\right)$ n $C^{2}\left((0, T) \times \mathbb{R}^{n}\right)$ solves $u_{t}-\Delta u=0$ in $(0, T) \times \mathbb{R}^{n}$ with initial data $u(0, x)=g(x)$. If $\sup _{\mathbb{R}^{n}} g=M<\infty$, and if

$$
\begin{equation*}
u(t, x) \leq A e^{a|x|^{2}} \tag{1}
\end{equation*}
$$

for all (t, x) and constants A and $a>0$, then $u(t, x) \leq M$ for all $(t, x) \in[0, T] \times \mathbb{R}^{n}$.
Proof. Inspired by the heat kernel, we define the function B by

$$
B(t, x)=t^{-n / 2} e^{|x|^{2} / 4 t} \quad \text { for } t>0 \text { and } x \in \mathbb{R}^{n}
$$

A straightforward calculation shows that B satisfies $B_{t}+\Delta B=0$ (the backward heat equation). Note that B is a strictly decreasing function of t for fixed x, and that $B(t, x) \geq t^{-n / 2} \rightarrow \infty$ when $t \rightarrow 0$.

Now let $\varepsilon>0$ and define

$$
v(t, x)=u(t, x)-\varepsilon B(T-t, x)
$$

Then $v_{t}-\Delta v=0$. We shall apply the maximum principle to the ball $B_{R}(0)$ for some (large) R. Clearly, $v(0, \boldsymbol{x})<M$ for all \boldsymbol{x}. Further, for $|\boldsymbol{x}|=R$ and $0 \leq t<T$, we find

$$
v(t, x)<A e^{a R^{2}}-\varepsilon T^{-n / 2} e^{R^{2} / 4 T}=\left(A e^{(a-1 / 4 T) R^{2}}-\varepsilon T^{-n / 2}\right) e^{R^{2} / 4 T}<M
$$

provided $T<4 a$ and R is large enough (depending on ε; and notice that M may be negative). In particular, if R is chosen big enough, $v(t, x) \leq M$ whenever $(t, x) \in$ $(0, T) \times \partial B(0, R)$. Therefore, $v(t, \boldsymbol{x}) \leq M$ for $(t, \boldsymbol{x}) \in(0, T) \times B(0, R)$. Since R can be as big as we please, this holds for all $x \in \mathbb{R}^{n}$. Now we get $u(t, x)=v(t, x)+\varepsilon B(T-t, x) \leq$ $M+\varepsilon B(T-t, \boldsymbol{x})$. Letting $\varepsilon \rightarrow 0$, we conclude that $u(t, \boldsymbol{x}) \leq M$.

If $T \geq 4 a$, we can use this result repeatedly, first on $\left[0, T^{\prime}\right]$, then on $\left[T^{\prime}, 2 T^{\prime}\right]$ (noting that after the first step we know that $u\left(T^{\prime}, x\right) \leq M$), and so forth, where $T^{\prime}<4 a$.

Just as for bounded domains, we can now derive a weak minimum principle, a uniqueness result, and continuous dependence of initial data for the heat equation on $(0, T) \times \mathbb{R}^{n}$. We just need to add a growth condition like (1) on the solution. The details are left to the reader.

Note that our example above with $\Omega=(0, \pi) \times \mathbb{R}$ satisfies the growth condition (1), showing that we would need a tighter condition to get a maximum principle on that domain.

For the exercises below, we return to bounded domains Ω.
Exercise 1 (Continuous dependence on data, improved). Assume that u_{1} and u_{2} satisfy

$$
\begin{aligned}
\partial_{t} u_{i}-\Delta u_{i} & =f_{i}
\end{aligned} \quad \text { in } \Omega_{T}, \quad \text { for } i=1,2 .
$$

Let $\varphi=\sup _{\Omega_{T}}\left|f_{1}-f_{2}\right|$ and $\gamma=\max _{\Gamma}\left|g_{1}-g_{2}\right|$, and show that $\left|u_{1}-u_{2}\right| \leq \gamma+\varphi T$.
Note that for any t, we can pick $T=t$, so we really get $\left|u_{1}-u_{2}\right| \leq \gamma+\varphi t$.
Hint: Apply the maximum principle to $u_{1}-u_{2}-\varphi t$ and $u_{2}-u_{1}-\varphi t$.
Exercise 2. Show that the maximum (and minimum) principle continues to hold if $u_{t}-\Delta u$ is replaced by

$$
u_{t}-\Delta u+b(\nabla u)
$$

where the real matrix A is symmetric and positive definite, provided the continuous function b satisfies $b(\mathbf{0})=0$. (For a simple and common example, let $b(\nabla u)=\boldsymbol{b} \cdot \nabla u$.)

Exercise 3. Show that the maximum (and minimum) principle continues to hold if $u_{t}-\Delta u$ is replaced by the more general

$$
u_{t}-\nabla \cdot(A \nabla u)
$$

where the (constant) real $n \times n$ matrix A is symmetric and positive definite.
Here are some ingredients for a proof:

- The Hessian of u is defined to be the (symmetric!) $n \times n$ matrix $\mathrm{H} u$ with entries $u_{x_{i} x_{j}}$. At an interior maximum point, $\mathrm{H} u$ is negative semidefinite, i.e., $\boldsymbol{y}^{T} \mathrm{H} y \leq$ 0 for all $y \in \mathbb{R}^{n}$. (Short proof: Take the second derivative of $u(x+s y)$ with respect to s where x is a maximum point, and put $s=0$.)
- The Frobenius inner product of two real matrices A and B is

$$
\langle A, B\rangle_{\mathrm{F}}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{i j}=\operatorname{tr}\left(A^{T} B\right) .
$$

It turns out that

$$
\nabla \cdot(A \nabla u)=\langle A, \mathrm{H} u\rangle_{\mathrm{F}} .
$$

- It is known that if A and B are positive semidefinite, then $\langle A, B\rangle_{\mathrm{F}} \geq 0$. (Short proof: Since A is symmetric, we can write $\langle A, B\rangle_{\mathrm{F}}=\operatorname{tr}(A B)$. A will have a positive semidefinite square root $A^{1 / 2}$. A standard result on the trace gives $\operatorname{tr}(A B)=\operatorname{tr}\left(A^{1 / 2} A^{1 / 2} B\right)=\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)$, but $A^{1 / 2} B A^{1 / 2}$ is positive semidefinite, and such matrices have nonnegative trace.)

Remark. In many PDE texts, the term $\nabla \cdot(A \nabla u)$ is written out in detail as

$$
\nabla \cdot(A \nabla u)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} u_{x i x j} .
$$

Pedantically speaking, considering the order in which derivatives are taken, that should be

$$
\nabla \cdot(A \nabla u)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} u_{x \beta_{i},},
$$

but this makes no difference, due to symmetry.
Combining the previous two exercises leads to the maximum/minimum principles for the operator

$$
u_{t}-\nabla \cdot(A \nabla u)+b(\nabla u),
$$

but it seemed easier to handle the two extensions separately.

Appendix: Tikhonov's example. Andrey Tikhonov (Андре́й Ти́хонов, 19061993) produced an example of a non-zero solution to the heat equation on the real line, with zero initial data. His solution had the form

$$
u(t, x)=\sum_{n=0}^{\infty} g_{n}(t) x^{n}
$$

Then

$$
\begin{aligned}
u_{t} & =\sum_{n=0}^{\infty} g_{n}^{\prime}(t) x^{n} \\
u_{x x} & =\sum_{n=0}^{\infty}(n+2)(n+1) g_{n+2}(t) x^{n}
\end{aligned}
$$

so we must require

$$
g_{n+2}(t)=\frac{g_{n}^{\prime}(t)}{(n+2)(n+1)}
$$

Tikhonov chose $g_{1}(t)=0$, and hence $g_{n}(t)=0$ for all odd n. He also chose $g_{0}(t)=$ $g(t)=e^{-t^{-a}}$ for some $a>0$. From the above recurrence we now conclude that

$$
u(t, x)=\sum_{k=0}^{\infty} \frac{g^{(2 k)}(t)}{(2 k)!} x^{2 k}
$$

It is apparent that $g^{(2 k)}(t)$ equals $e^{-t^{-a}}$ times some linear combination of powers of t. Because $a>0$, the resulting expression has the limit 0 as $t \rightarrow 0$ (from above). Thus also $\lim _{t \rightarrow 0} u(t, x)=0$ for all x.

All of the above requires that the series converge! (Series in plural: That for u itself, and the involved derivatives.) This is the only hard part. But it is quite hard; it requires a careful choice of the constant a, and one needs to derive a good upper bound for $\left|g^{(2 k)}(t)\right|$. We shall not pursue this further.

