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In this note, we consider the standard heat equation
w—Au=0 in Qr

where Q C R" is a bounded region, Q7 = (0,T) x Q with T > 0, and
u € C(Qr) nC*(Qy).

We think of Qr as an open cylinder with base Q and height T. Its closure is a closed
cylinder: Q7 = [0, T] x Q.

Definition. The parabolic boundary of Qr is the set
I'= ({0} xQ) u ([0,T] x 8Q).
Clearly, I' is contained in the normal boundary 9Qr; the difference is
QT = {T}x Q.
We may call {T} x Q the final boundary of Qr (nonstandard nomenclature).

Observation. If a C? function v has a maximum at some point in Qr, then v, = 0
and Av < 0 at that point, so we get v — Av > 0 there. Moreover, this holds at the
final boundary as well, the only difference being that there, we can only conclude
v > 0 and Av < 0. In other words,

v —Av>0 atany maximum in Qp\T.

We must face a minor technical glitch: The above statement requires that v is C?
up to and including the final boundary of Q. This complicates the proof of the
following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume thatu € C(Qir) nC? (QT) sat-
isfies

w—Au<0.

Then u(t, x) < maxy u for all (t,x) € Qr. In other words, u achieves its maximum on
the parabolic boundary.

Proof. First, to deal with the “minor technical glitch” mentioned above, we shall
strengthen the assumptions somewhat, and assume that u € c? ((0, T] x Q). We will
remove this extra assumption at the end.

Now let ¢ > 0, and put v(t, x) = u(t, x) — et. Then v, — Av < —¢ < 0, and so it fol-
lows immediately from the Observation above that v cannot achieve its maximum
anywhere other than at I'. On the other hand, since v is continuous and Qr is com-
pact, v does have a maximum in STT and so we must conclude that v(t, x) < maxpv
for any (t,x) € Qr. But then u(t,x) = v(t,x) + et < maxpv + T < maxpu + ¢T.
Since this holds for any ¢ > 0, it finally follows that u(t, x) < maxr u, and the proof
is complete, with the strengthened assumptions.

We now drop the requirement that u € C2((0, T] x Q). Given any point (¢, x) € Qr,
pick some T’ witht < T < T. Then u € Cz((O, T’] x Q), so the first part shows that
u(t, x) < maxr,, u. Here I'» is tbe parabolic boundary of Q7. But ' C T, so we
also have u(t, x) < maxr u. Finally, this also holds for t = T, since u is continuous on
Qr. This, at last, completes the proof. '

It should come as no surprise that there is also a minimum principle. It is proved
by replacing u by —u in Theorem 1.

Corollary 2 (The weak minimum principle). Assume that u € C(Qr) n CZ(QT)
satisfies
w— Au > 0.

Then u(t, x) > minr u for all (t,x) € Q. In other words, u achieves its minimum on
the parabolic boundary.

We will mostly be concerned with solutions of the heat equation u, — Au = 0,
and for these, both the maximum principle and the minimum principle can be used.
But we may also wish to study inhomogeneous equations u;, — Au = f, and if fhas
a definite sign, one or the other principle will apply.

Corollary 3 (Uniqueness for the heat equation). There exists at most one solution
ue C(§TT) n CZ(QT) to the problem
w—Au=f inQp
u=g onl.

Here, f and g are given functions on Qp and T, respectively. (Thus g combines initial
values and boundary values in one function.)

Proof. Let u be the difference between two solutions to this problem: Then u solves
the same problem, but with f = 0 and g = 0. Thus u achieves both its minimum and
maximum on T, but u = 0 there, so u = 0 everywhere. 1



The following corollary is proved in essentially the same way, by applying the
minimum and maximum principles to u; — u,. Note that it immediately implies the
preceding corollary by taking g; = g».

Corollary 4 (Continuous dependence on initial data). Letu; and uy satisfy
oqu; — Ay = in Qr,
wh = A = f T fori=1,2
=g onl,
Then |u; — up| < maxrlg; — gl-

Unbounded domains: Without further assumptions, the maximum principle is
false on unbounded domains. This is easiest to see in two dimensions:

Example. With Q = R x (0, 7), define u(t, x,y) = e*sinyfort > 0 and (x,y) € Q

(note the lack of time dependence). Then u; — Au = 0 and u = 0 on 3Q, yet u is not
identically zero.

It is possible, but quite a bit harder, to create a similar example with Q = R. We
describe a famous example by Tikhonov in the appendix at the end of this note.
However, with some extra growth condition on the solution, we have the following
result:

Theorem 5 (The weak maximum principle on R"). Assume thatu € C([0,T]xR")n
C? ((0, T) x ]R") solves u; — Au = 0 in (0,T) x R" with initial data u(0,x) = g(x). If
SUpgn & = M < oo, and if

u(t,x) < Aedll’ (1)
for all (¢, x) and constants A and a > 0, then u(t, x) < M for all (t,x) € [0, T] x R".

Proof. Inspired by the heat kernel, we define the function B by
B(t,x) = 1/2lx /4t fort > 0and x € R™.

A straightforward calculation shows that B satisfies B; + AB = 0 (the backward
heat equation). Note that B is a strictly decreasing function of ¢ for fixed x, and that
B(t,x) >t ™2 > co when t — 0.

Now let ¢ > 0 and define

v(t,x) = u(t,x) — eB(T — t, x).

Then v; — Av = 0. We shall apply the maximum principle to the ball Bg(0) for some
(large) R. Clearly, v(0, x) < M for all x. Further, for |x| = Rand 0 <t < T, we find

v(t,x) < AR _ oT/2R /4T (Ae(c’fl/‘*T)R2 - eTfn/Z)eRZ/‘lT <M

provided T < 4a and R is large enough (depending on ¢ and notice that M may be
negative). In particular, if R is chosen big enough, v(t,x) < M whenever (¢, x) €
(0, T) x 9B(0, R). Therefore, v(t, x) < Mfor (t,x) € (0, T) x B(0, R). Since R can be as
big as we please, this holds for all x € R”. Now we get u(t, x) = v(t, x)+&eB(T—t, x) <
M + ¢B(T —t, x). Letting ¢ — 0, we conclude that u(t, x) < M.

If T > 4a, we can use this result repeatedly, first on [0,T’], then on [T’,2T’]
(noting that after the first step we know that u(T’, x) < M), and so forth, where
T’ < 4a. ]

Just as for bounded domains, we can now derive a weak minimum principle, a
uniqueness result, and continuous dependence of initial data for the heat equation
on (0,T) x R". We just need to add a growth condition like (1) on the solution. The
details are left to the reader.

Note that our example above with Q = (0, ) x R satisfies the growth condition
(1), showing that we would need a tighter condition to get a maximum principle on
that domain.

For the exercises below, we return to bounded domains Q.

Exercise 1 (Continuous dependence on data, improved). Assume that u; and u,
satisfy
atui - Au,- = fl in QT,

fori=1,2.
wy=g onl,

Let ¢ = supg, |f; — fo| and y = maxrlg; — go|, and show that [u; —u,| <y + ¢T.
Note that for any t, we can pick T = t, so we really get [u; — uy| <y + ¢t.
Hint: Apply the maximum principle to u; — uy — ¢t and uy — u; — ¢t.

Exercise 2. Show that the maximum (and minimum) principle continues to hold if
w, — Au is replaced by
u — Au + b(Vu),

provided the continuous function b satisfies 5(0) = 0. (For a simple and common
example, let b(Vu) = b - Vu.)

Exercise 3. Show that the maximum (and minimum) principle continues to hold if
w; — Au is replaced by the more general

w— V- (AVy)

where the (constant) real n x n matrix A is symmetric and positive definite.
Here are some ingredients for a proof:
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+ The Hessian of u is defined to be the (symmetric!) nxn matrix Hu with entries
U At an interior maximum point, Hu is negative semidefinite, i.e., yTHy <
0 for all y € R™. (Short proof: Take the second derivative of u(x + sy) with
respect to s where x is a maximum point, and put s = 0.)

The Frobenius inner product of two real matrices A and B is

<A, B>F = Z Z aijbij = tr(ATB)

i=1 j=1

It turns out that
V- (AVu) = (A, Hu)g.

o It is known that if A and B are positive semidefinite, then (A, B)g > 0. (Short
proof: Since A is symmetric, we can write (A, B)p = tr(AB). A will have a
positive semidefinite square root Al/2_ A standard result on the trace gives
tr(AB) = tr(A/2AY/2B) = tr(A/2BA!/2), but A1/2BA!/2 is positive semidef-
inite, and such matrices have nonnegative trace.)

Remark. In many PDE texts, the term V - (AVu) is written out in detail as

V- (AVu) = Z": Zn: Bihy-

i=1 j=1
Pedantically speaking, considering the order in which derivatives are taken, that should be

n n

V(A = Y Y au,

i=1 j=1
but this makes no difference, due to symmetry.

Combining the previous two exercises leads to the maximum/minimum principles for the
operator
u, — V- (AVu) + b(Vu),

but it seemed easier to handle the two extensions separately.
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Appendix: Tikhonov’s example. Andrey Tikhonov (Auxpéit Trixonos, 1906

1993) produced an example of a non-zero solution to the heat equation on the real
line, with zero initial data. His solution had the form

u(t,x) = Z ga(t)x".
n=0
Then
W=y g,
n=0
Uxx = Z(n +2)(n + 1) gpya(®)x",

n=0

so we must require

&n(®)
(m+2)n+1)

Tikhonov chose g;(t) = 0, and hence g,(¢) = 0 for all odd n. He also chose g(t) =
gt) = e for some a > 0. From the above recurrence we now conclude that

8n+2 (t) =

O]

XZk.
& (0!

u(t,x) =

It is apparent that g(Zk)(t) equals ¢ times some linear combination of powers of t.
Because a > 0, the resulting expression has the limit 0 as + — 0 (from above). Thus
also lim;_,q u(t, x) = 0 for all x.

All of the above requires that the series converge! (Series in plural: That for u
itself, and the involved derivatives.) This is the only hard part. But it is quite hard;
it requires a careful choice of the constant a, and one needs to derive a good upper
bound for | g(Zk)(t)\, We shall not pursue this further.
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