Weak maximum principle for the heat equation

Harald Hanche-Olsen

In this note, we consider the standard heat equation

$$u_t - \Delta u = 0$$
 in Ω_T

where $\Omega \subset \mathbb{R}^n$ is a *bounded* region, $\Omega_T = (0, T) \times \Omega$ with T > 0, and

$$u \in C(\overline{\Omega_T}) \cap C^2(\Omega_T).$$

We think of Ω_T as an open *cylinder* with base Ω and height *T*. Its closure is a closed cylinder: $\overline{\Omega_T} = [0, T] \times \overline{\Omega}$.

Definition. The *parabolic boundary* of Ω_T is the set

$$\Gamma = (\{0\} \times \overline{\Omega}) \cup ([0, T] \times \partial \Omega).$$

Clearly, Γ is contained in the normal boundary $\partial \Omega_T$; the difference is

$$\partial \Omega_T \smallsetminus \Gamma = \{T\} \times \Omega.$$

We call $\{T\} \times \Omega$ the *final boundary* of Ω_T (nonstandard nomenclature).

Observation. If a C^2 function v has a maximum at some point in Ω_T , then $v_t = 0$ and $\Delta v \leq 0$ at that point, so we get $v_t - \Delta v \geq 0$ there. Moreover, this holds at the final boundary as well, the only difference being that there, we can only conclude $v_t \geq 0$ and $\Delta v \leq 0$. In other words,

 $v_t - \Delta v \ge 0$ at any maximum in $\overline{\Omega_T} \setminus \Gamma$.

We must face a minor technical glitch: The above statement requires that v is C^2 up to and including the final boundary of Ω_T . This complicates the proof of the following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume that $u \in C(\overline{\Omega_T}) \cap C^2(\Omega_T)$ satisfies

$$u_t - \Delta u \le 0.$$

Then $u(t, \mathbf{x}) \leq \max_{\Gamma} u$ for all $(t, \mathbf{x}) \in \overline{\Omega_T}$. In other words, u achieves its maximum on the parabolic boundary.

v. 2019-09-18

Weak maximum principle for the heat equation

Proof. First, to deal with the "minor technical glitch" mentioned above, we shall strengthen the assumptions somewhat, and assume that $u \in C^2((0,T] \times \Omega)$. We will remove this extra assumption at the end.

Now let $\varepsilon > 0$, and put $v(t, \mathbf{x}) = u(t, \mathbf{x}) - \varepsilon t$. Then $v_t - \Delta v \le -\varepsilon < 0$, and so it follows *immediately* from the Observation above that v cannot achieve its maximum anywhere other than at Γ . On the other hand, since v is continuous and $\overline{\Omega_T}$ is compact, v does have a maximum in $\overline{\Omega_T}$, and so we must conclude that $v(t, \mathbf{x}) \le \max_{\Gamma} v$ for any $(t, \mathbf{x}) \in \overline{\Omega_T}$. But then $u(t, \mathbf{x}) = v(t, \mathbf{x}) + \varepsilon t \le \max_{\Gamma} v + \varepsilon T \le \max_{\Gamma} u + \varepsilon T$. Since this holds for any $\varepsilon > 0$, it finally follows that $u(t, \mathbf{x}) \le \max_{\Gamma} u$, and the proof is complete, with the strengthened assumptions.

We now drop the requirement that $u \in C^2((0, T] \times \Omega)$. Given any point $(t, \mathbf{x}) \in \Omega_T$, pick some T' with t < T' < T. Then $u \in C^2((0, T'] \times \Omega)$, so the first part shows that $u(t, \mathbf{x}) \leq \max_{\Gamma_T} u$. Here $\Gamma_{T'}$ is the parabolic boundary of $\Omega_{T'}$. But $\Gamma_{T'} \subset \Gamma$, so we also have $u(t, \mathbf{x}) \leq \max_{\Gamma} u$. Finally, this also holds for t = T, since u is continuous on $\overline{\Omega_T}$. This, at last, completes the proof.

It should come as no surprise that there is also a *minimum* principle. It is proved by replacing u by -u in Theorem 1.

Corollary 2 (The weak minimum principle). Assume that $u \in C(\overline{\Omega_T}) \cap C^2(\Omega_T)$ satisfies

$$u_t - \Delta u \ge 0.$$

Then $u(t, \mathbf{x}) \geq \min_{\Gamma} u$ for all $(t, \mathbf{x}) \in \overline{\Omega_T}$. In other words, u achieves its minimum on the parabolic boundary.

We will mostly be concerned with solutions of the heat equation $u_t - \Delta u = 0$, and for these, both the maximum principle and the minimum principle can be used. But we may also wish to study inhomogeneous equations $u_t - \Delta u = f$, and if *f* has a definite sign, one or the other principle will apply.

Corollary 3 (Uniqueness for the heat equation). There exists at most one solution $u \in C(\overline{\Omega_T}) \cap C^2(\Omega_T)$ to the problem

$$u_t - \Delta u = f \quad in \ \Omega_T,$$

$$u = g \quad on \ \Gamma.$$

Here, f and g are given functions on Ω_T and Γ , respectively. (Thus g combines initial values and boundary values in one function.)

Proof. Let *u* be the difference between two solutions to this problem: Then *u* solves the same problem, but with f = 0 and g = 0. Thus *u* achieves both its minimum and maximum on Γ , but u = 0 there, so u = 0 everywhere.

The following corollary is proved in essentially the same way, by applying the minimum and maximum principles to $u_1 - u_2$. Note that it immediately implies the preceding corollary by taking $g_1 = g_2$.

Corollary 4 (Continuous dependence on data). Let u_1 and u_2 satisfy

$$\begin{array}{c} u_{it} - \Delta u_i = f & in \ \Omega_T, \\ u_i = g_i & on \ \Gamma, \end{array} \right\} \quad for \ i = 1, 2.$$

Then $|u_1 - u_2| \le \max_{\Gamma} |g_1 - g_2|$.

Unbounded domains: Without further assumptions, the maximum principle is *false* on unbounded domains. This is easiest to see in two dimensions:

Example. With $\Omega = \mathbb{R} \times (0, \pi)$, define $u(t, x, y) = e^x \sin y$ for t > 0 and $(x, y) \in \Omega$ (note the lack of time dependence). Then $u_t - \Delta u = 0$ and u = 0 on $\partial\Omega$, yet u is not identically zero.

It is possible, but quite a bit harder, to create a similar example with $\Omega = \mathbb{R}$. However, with some extra growth condition on the solution, we have the following result:

Theorem 5 (The weak maximum principle on \mathbb{R}^n). Assume that $u \in C([0,T] \times \mathbb{R}^n) \cap C^2((0,T) \times \mathbb{R}^n)$ solves $u_t - \Delta u = 0$ in $(0,T) \times \mathbb{R}^n$ with initial data $u(0, \mathbf{x}) = g(\mathbf{x})$. If $\sup_{\mathbb{R}^n} g = M < \infty$, and if

$$u(t, \mathbf{x}) \le A e^{a|\mathbf{x}|^2} \tag{1}$$

for all (t, \mathbf{x}) and some A, a > 0, then $u(t, \mathbf{x}) \leq M$ for all $(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^n$.

Proof. Inspired by the heat kernel, we define the function *B* by

$$B(t, \mathbf{x}) = t^{-n/2} e^{|\mathbf{x}|^2/4t} \quad \text{for } t > 0 \text{ and } \mathbf{x} \in \mathbb{R}^n.$$

A straightforward calculation shows that *B* satisfies $B_t + \Delta B = 0$ (the *backward heat equation*). Note that *B* is a strictly decreasing function of *t* for fixed *x*, and that $B(t, x) \rightarrow \infty$ when $t \rightarrow 0$.

Now let $\varepsilon > 0$ and define

$$v(t, \mathbf{x}) = u(t, \mathbf{x}) - \varepsilon B(T - t, \mathbf{x}).$$

Then $v_t - \Delta v = 0$. We shall apply the maximum principle to the ball $B(\mathbf{0}, R)$ for some (large) R. Clearly, $v(0, \mathbf{x}) = g(\mathbf{x}) - \varepsilon B(T, \mathbf{x}) < M$. Further, on the boundary of $B(\mathbf{0}, R)$, i.e., when $|\mathbf{x}| = R$ we find

$$v(t, \mathbf{x}) < Ae^{aR^2} - \varepsilon T^{-n/2}e^{R^2/4T} = (Ae^{(a-1/4T)R^2} - \varepsilon T^{-n/2})e^{R^2/4T}.$$

v. 2019-09-18

If T < 4a, the parenthesis converges to $-\varepsilon T^{-n/2}$ when $R \to \infty$, while $e^{R^2/4T} \to \infty$, so the whole expression diverges to $-\infty$. In particular, if *R* is chosen big enough, $v(t, \mathbf{x}) \leq M$ whenever $(t, \mathbf{x}) \in (0, T) \times \partial B(\mathbf{0}, R)$. Therefore, $v(t, \mathbf{x}) \leq M$ for $(t, \mathbf{x}) \in$ $[0, T] \times B(\mathbf{0}, R)$. Since *R* can be as big as we please, this holds for all $\mathbf{x} \in \mathbb{R}^n$.

If $T \ge 4a$, we can use this result repeatedly, first on [0, T'], then on [T', 2T'] (noting that after the first step we know that $u(T', x) \le M$), and so forth, where T' < 4a.

Just as for bounded domains, we can now derive a weak minimum principle, a uniqueness result, and continuous dependence of initial data for the heat equation on $(0, T) \times \mathbb{R}^n$. We just need to add a growth condition like (1) on the solution. The details are left to the reader.

Note that our example above on $(0, \pi) \times \mathbb{R}$ satisfies the growth condition (1), showing that we would need a tighter condition to get a maximum principle on that domain.

For the exercises below, we return to bounded domains Ω .

Exercise 1 (Continuous dependence on data, improved). Assume that u_1 and u_2 satisfy

$$\begin{array}{c} u_{it} - \Delta u_i = f_i & \text{in } \Omega_T, \\ u_i = g_i & \text{on } \Gamma, \end{array} \right\} \quad \text{for } i = 1, 2.$$

Let $\varphi = \sup_{\Omega_T} |f_1 - f_2|$ and $\gamma = \max_{\Gamma} |g_1 - g_2|$, and show that $|u_1 - u_2| \le \gamma + \varphi T$.

Note that for any *t*, we can pick T = t, so we really get $|u_1 - u_2| \le \gamma + \varphi t$.

Hint: Apply the maximum principle to $u_1 - u_2 - \varphi t$ and $u_2 - u_1 - \varphi t$.

Exercise 2. Show that the maximum (and minimum) principle continues to hold if $u_t - \Delta u$ is replaced by the more general

$$u_t - \nabla \cdot (A \nabla u)$$

where the (constant) real $n \times n$ matrix *A* is symmetric and positive definite.

Here are some ingredients for a proof:

- The *Hessian* of *u* is defined to be the (symmetric!) $n \times n$ matrix H*u* with entries $u_{x_ix_j}$. At an interior maximum point, H*u* is negative semidefinite, i.e., $y^T H y \le 0$ for all $y \in \mathbb{R}^n$. (Short proof: Take the second derivative of u(x + sy) with respect to *s* where *x* is a maximum point, and put s = 0.)
- The *Frobenius inner product* of two real matrices *A* and *B* is

$$\langle A, B \rangle_{\rm F} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij} = \operatorname{tr}(A^T B)$$

v. 2019-09-18

It turns out that

$$\nabla \cdot (A \nabla u) = \langle A, Hu \rangle_{\mathrm{F}}.$$

• It is known that if A and B are positive semidefinite, then $\langle A, B \rangle_{\rm F} \ge 0$. (Short proof: Since A is symmetric, we can write $\langle A, B \rangle_{\rm F} = {\rm tr}(AB)$. A will have a positive semidefinite square root $A^{1/2}$. A standard result on the trace gives ${\rm tr}(AB) = {\rm tr}(A^{1/2}A^{1/2}B) = {\rm tr}(A^{1/2}BA^{1/2})$, but $A^{1/2}BA^{1/2}$ is positive semidefinite, and such matrices have nonnegative trace.)

Exercise 3. Show that the maximum (and minimum) principle continues to hold if $u_t - \Delta u$ is replaced by the even more general

$$u_t - \nabla \cdot (A \nabla u) + b(\nabla u),$$

where the real matrix *A* is symmetric and positive definite, provided the continuous function *b* satisfies $b(\mathbf{0}) = 0$. (For a simple and common example, let $b(\nabla u) = \mathbf{b} \cdot \nabla u$.)

Remark. In many PDE texts, the term $\nabla \cdot (A \nabla u)$ is written out in detail as

$$abla \cdot (A \nabla u) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} u_{x_i x_j}.$$

Pedantically speaking, considering the order in which derivatives are taken, that should be

$$\nabla \cdot (A \nabla u) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} u_{x_j x_i},$$

but this makes no difference, due to symmetry.