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In this note, we consider the standard heat equation
w—Au=20 in Qr

where Q C R" is a bounded region, Q7 = (0,T) x Q with T > 0, and
u € C(Qr) n C*(Qr).

We think of Qr as an open cylinder with base Q and height T. Its closure is a closed
cylinder: Q= [0,T] x Q.

Definition. The parabolic boundary of Qris the set
I'=({0}xQ)u ([0,T] x3Q).
Clearly, T is contained in the normal boundary 9Qr; the difference is
AQ\T ={T}x Q.
We call {T} x Q the final boundary of Qp (nonstandard nomenclature).

Observation. If a C? function v has a maximum at some point in Qr, then v, = 0
and Av < 0 at that point, so we get vy — Av > 0 there. Moreover, this holds at the
final boundary as well, the only difference being that there, we can only conclude
v; > 0 and Av < 0. In other words,

v, —Av >0 atany maximum in Qp\T.

We must face a minor technical glitch: The above statement requires that v is C
up to and including the final boundary of Qp. This complicates the proof of the
following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume thatu € C(Qr) n CZ(QT) sat-
isfies
w—Au<0.

Then u(t, x) < maxr u for all (t, x) € Qr. In other words, u achieves its maximum on
the parabolic boundary.



Proof. First, to deal with the “minor technical glitch” mentioned above, we shall
strengthen the assumptions somewhat, and assume that u € Cz((O, T] x Q). We will
remove this extra assumption at the end.

Now let ¢ > 0, and put v(¢, x) = u(t, x) — et. Then v, — Av < —¢ < 0, and so it fol-
lows immediately from the Observation above that v cannot achieve its maximum
anywhere other than at T'. On the other hand, since v is continuous and Qr is com-
pact, v does have a maximum in Qr, and so we must conclude that v(t, x) < maxp v
for any (t,x) € Qr. But then u(t,x) = v(t,x) + et < maxpv + T < maxpu + €T,
Since this holds for any ¢ > 0, it finally follows that u(t, x) < maxr u, and the proof
is complete, with the strengthened assumptions.

We now drop the requirement that u € C?((0,T] x Q). Given any point (t, x) € Qr,
pick some T” witht < T’ < T. Then u € Cz((O, T'] x Q), so the first part shows that
u(t,x) < maxr,, u. Here '+ is tbe parabolic boundary of Qr+. But I't» C T, so we
also have u(t, x) < maxr u. Finally, this also holds for ¢t = T, since u is continuous on
Qr. This, at last, completes the proof. '

It should come as no surprise that there is also a minimum principle. It is proved
by replacing u by —u in Theorem 1.

Corollary 2 (The weak minimum principle). Assume that u € C(Qr) n CZ(QT)
satisfies
w—Au > 0.

Then u(t, x) > minr u for all (t,x) € Qr. In other words, u achieves its minimum on
the parabolic boundary.

We will mostly be concerned with solutions of the heat equation u, — Au = 0,
and for these, both the maximum principle and the minimum principle can be used.
But we may also wish to study inhomogeneous equations u; — Au = f, and if fhas
a definite sign, one or the other principle will apply.

Corollary 3 (Uniqueness for the heat equation). There exists at most one solution
u € C(Qr) n C*(Qr) to the problem

w—Au=f inQp
u=g onl.

Here, f and g are given functions on Qr and T, respectively. (Thus g combines initial
values and boundary values in one function.)

Proof. Let u be the difference between two solutions to this problem: Then u solves
the same problem, but with f = 0 and g = 0. Thus u achieves both its minimum and
maximum on I, but u = 0 there, so u = 0 everywhere. '



The following corollary is proved in essentially the same way, by applying the
minimum and maximum principles to u; — u,. Note that it immediately implies the
preceding corollary by taking g; = g».

Corollary 4 (Continuous dependence on data). Let u; and uy satisfy

Uy — Aui = f in QT,

=g onl,

} fori=1,2.

Then |uy — up| < maxrp|g; — g2l

Exercise 1 (Continuous dependence on data, improved). Assume that u; and u,
satisfy
+— Au, = f; in Qg
tig = Aty = Pl fori=1,2.
wy=g onl,
Let ¢ = supq | fi — fol and y = maxr|g; — g»|, and show that [u; — up| <y + ¢T.
Note that for any #, we can pick T = t, so we really get |u; — uy| < y + ¢t.
Hint: Apply the maximum principle to u; — u, — ¢t and u, — u; — ¢t.

Exercise 2. Show that the maximum (and minimum) principle continues to hold if
u; — Au is replaced by the more general

w— V- (AVu)

where the (constant) real n x n matrix A is symmetric and positive definite.
Here are some ingredients for a proof:

« The Hessian of u is defined to be the (symmetric!) n xn matrix Hu with entries
U At an interior maximum point, Hu is negative semidefinite, i.e., yTHy <
0 for all y € R™. (Short proof: Take the second derivative of u(x + sy) with
respect to s where x is a maximum point, and put s = 0.)

« The Frobenius inner product of two real matrices A and B is

n n
<A, B>F = Z Z aijbij = tr(ATB)
i=1 j=1
It turns out that
V- (AVu) = (A, Hu)g.

« It is known that if A and B are positive semidefinite, then (A, B)g > 0. (Short
proof: Since A is symmetric, we can write (A, B)y = tr(AB). A will have a
positive semidefinite square root A2 A standard result on the trace gives
tr(AB) = tr(A/2AY/2B) = tr(A/2BAY/2), but AY/2BA/2 is positive semidef-
inite, and such matrices have nonnegative trace.)



Exercise 3. Show that the maximum (and minimum) principle continues to hold if
w; — Au is replaced by the even more general

w— V- (AVu) + b(Vu),

where the real matrix A is symmetric and positive definite, provided the continuous
function b satisfies b(0) = 0. (For a simple and common example, let b(Vu) = b-Vu.)
Remark. In many PDE texts, the term V - (AVu) is written out in detail as

n
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-

Pedantically speaking, considering the order in which derivatives are taken, that
should be
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but this makes no difference, due to symmetry.



