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Harmonicfunctionology
Harald Hanche-Olsen

The Laplace operator on ℝ𝑛

Δ =
𝑛
∑
𝑖=1

∂2

∂𝑥2𝑖
plays a rôle in the wave and heat equations, but even more fundamentally, in the
Laplace equation

Δ𝑢 = 0 (1)

and the Poisson equation −Δ𝑢 = 𝑓 where 𝑓 is a given function.
A 𝐶2 solution of (1) is called harmonic. (Later, in Theorem 4, we will find that

harmonic functions are in fact infinitely differentiable.)
Much is gained from the trivial observation thatΔ𝑢 = ∇⋅∇𝑢 together with various

applications of the divergence theorem or two of its corollaries, Green’s first and
second identities.

Let’s get started by simply integrating Δ𝑢 over a bounded domain 𝜔 with piece-
wise 𝐶1 boundary:1

∫
𝜔
Δ𝑢(𝒙) d𝑛𝒙 = ∫

𝜔
∇ ⋅ ∇𝑢(𝒙) d𝑛𝒙 = ∫

∂𝜔
∂𝑛𝑢(𝒙) d𝑆(𝒙). (2)

This immediately proves

Proposition 1. If a 𝐶2 function 𝑢 on a domain Ω is harmonic, then

∫
∂𝜔

∂𝑛𝑢 d𝑆 = 0 (3)

for all bounded domains 𝜔 with 𝜔 ⊂ Ω having piecewise 𝐶1 boundary.
Conversely, if (3) holds for every ball 𝜔 = 𝐵(𝒙, 𝑟) whose closure lies within Ω, then

𝑢 is harmonic.

Proof. We have already proved the first part. For the converse, (3) and (2) imply that
the average of Δ𝑢 over any ball is zero. By letting the radius of the ball 𝐵(𝒙, 𝑟) tend
to zero, we conclude that Δ𝑢(𝒙) = 0.

Definition. The (radius 𝑟 ) spherical average of a function 𝑢 at a point 𝒙 is defined
to be

̄𝑢𝒙(𝑟) = −∫
∂𝐵(𝒙,𝑟)

𝑢 d𝑆 = −∫
𝕊𝑛−1

𝑢(𝒙 + 𝑟𝒚) d𝑆(𝒚),

1Notation used here and elsewhere is explained at the end of this note.
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2 Harmonicfunctionology

where 𝕊𝑛−1 ⊂ ℝ𝑛 is the unit sphere and the “barred” integral signs denote the aver-
age:

−∫
∂𝐵(𝒙,𝑟)

𝑢 d𝑆 =
1

𝐴𝑛𝑟𝑛−1 ∫∂𝐵(𝒙,𝑟)
𝑢 d𝑆,

and 𝐴𝑛 is the area of 𝕊𝑛−1. Note that the second integral in the definition of ̄𝑢𝒙(𝑟)
makes sense even for 𝑟 < 0; thus, we adopt this as the definition for all real 𝑟 for
which the integrand is defined on 𝕊𝑛−1. We see that ̄𝑢𝒙 is an even function; it is 𝐶𝑘
if 𝑢 is 𝐶𝑘, and ̄𝑢𝒙(0) = 𝑢(𝒙).

When 𝜔 is a ball, we can rewrite (2) in terms of spherical averages: Noting that
the volume of the ball 𝐵(𝒙, 𝑟) is 𝐴𝑛𝑟𝑛/𝑛, we find

−∫
𝐵(𝒙,𝑟)

Δ𝑢(𝒚) d𝑛𝒚 =
𝑛
𝑟
−∫
𝐵(𝒙,𝑟)

∂𝑛𝑢(𝒚) d𝑆(𝒚) =
𝑛
𝑟
−∫
𝕊𝑛−1

∂𝑟𝑢(𝒙 + 𝑟𝒚) d𝑆(𝒚),

where we can move the 𝑟 derivative outside the integral, and arrive at

−∫
𝐵(𝒙,𝑟)

Δ𝑢(𝒚) d𝑛𝒚 =
𝑛
𝑟
̄𝑢′𝒙(𝑟). (4)

Along with ̄𝑢𝒙(0) = 𝑢(𝒙), this implies

Theorem 2 (The mean value property of harmonic functions). A 𝐶2 function 𝑢 on
a domain Ω is harmonic if and only if ̄𝑢𝒙(𝑟) = 𝑢(𝒙) for all 𝑥 ∈ Ω and all 𝑟 for which
𝐵(𝒙, |𝑟 |) ⊂ Ω.

In general, we say a function 𝑢 satisfies the mean value property if ̄𝑢𝒙(𝑟) = 𝑢(𝒙)
whenever 𝐵(𝒙, |𝑟 |) ⊂ Ω. We hall see below (Theorem 4) that the mean value property
characterizes harmonic functions. But first, we collect an easy consequence of (4).2

Proposition 3. For any 𝐶2 function 𝑢, we have

Δ𝑢(𝒙) = 𝑛 ̄𝑢″𝒙 (0).

Proof. The function ̄𝑢𝒙 is even, so ̄𝑢′𝒙(0) = 0. Therefore, letting 𝑟 → 0 in (4), we
arrive at the stated result.

Theorem 4 (The mean value property and regularity). Assume that a continuous
function 𝑢 satisfies the mean value property on a domain Ω. Then 𝑢 is infinitely differ-
entiable, and is therefore harmonic. In particular, every harmonic function is infinitely
differentiable.

2Faded out because although the result is interesting, we shall not use it.
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Harmonicfunctionology 3

Proof. This proof may seem long, but only because we use it to develop some tools
that have wider applicability.

First, define a standard mollifier 𝜌∶ ℝ𝑛 → ℝ. Here is one of many possible defi-
nitions:

𝜌(𝒙) = {
𝑎𝑒1/(|𝒙|

2−1), |𝒙| < 1
0, |𝒙| ≥ 1,

where the constant 𝑎 > 0 is chosen to ensure that

∫
ℝ𝑛

𝜌 d𝒙 = 1.

That is one of the defining qualities of a standard mollifier. The others are: That 𝜌 ≥
0 everywhere, that it vanishes outside the unit ball, that it is infinitely differentiable,
and is radially symmetric – that is, a function of |𝒙| alone.

For any 𝛿 > 0 we can squeeze the mollifier to fit inside a ball of radius 𝛿:

𝜌𝛿(𝒙) =
1
𝛿𝑛

𝜌(
𝒙
𝛿
),

so that 𝜌𝛿 also has integral 1, but vanishes outside the ball 𝐵(0, 𝛿).
Now we consider the convolution product

𝑢 ∗ 𝜌𝛿(𝒙) = ∫
ℝ𝑛

𝑢(𝒚)𝜌𝛿(𝒙 − 𝒚) d𝑛𝒚.

This is defined for all 𝑥 ∈ Ω with a distance less than 𝛿 to the complement of Ω.
Thus, for any 𝑥 ∈ Ω, we can make 𝛿 small enough so that 𝑢 ∗ 𝜌𝛿 is defined at 𝒙.

Moreover, 𝑢 ∗𝜌𝛿 is infinitely differentiable: This is proved by differentiating with
respect to the components of 𝒙 under the integral sign, as much as you like.

Finally, the mean value property of 𝑢 and the radial symmetry of 𝜌𝛿 combine to
ensure that 𝑢(𝒙) = 𝑢 ∗ 𝜌(𝒙) for all 𝒙 where 𝑢 ∗ 𝜌 is defined.

For a detailed argument, write

𝑢 ∗ 𝜌(𝒙)𝛿 = ∫
ℝ𝑛

𝑢(𝒙 − 𝒚)𝜌𝛿(𝒚) d𝑛𝒚

and write the integral in polar form:

𝑢 ∗ 𝜌𝛿(𝒙) = ∫
𝛿

0
∫
∂𝐵(𝒙,𝑟)

𝑢(𝒙 − 𝒚)𝜌𝛿(𝒚) d𝑆(𝒚) d𝑟

= ∫
𝛿

0
∫
𝕊𝑛−1

𝑢(𝒙 − 𝑟𝒚)𝜌𝛿(𝑟𝒚) d𝑆(𝒚) 𝑟𝑛−1 d𝑟. (5)

v. 2019-09-10



4 Harmonicfunctionology

Now use the radial symmetry: ̊𝜌𝛿(𝑟) ≔ 𝜌𝛿(𝑟𝒚) is independent of 𝑦 ∈ 𝕊𝑛−1, so this
factor can be moved outside the inner integral. Next, use the mean value property
of 𝑢:

∫
𝕊𝑛−1

𝑢(𝒙 − 𝑟𝒚)𝜌𝛿(𝑟𝒚) d𝑛𝒚 = 𝐴𝑛𝑢(𝒙) ̊𝜌𝛿(𝑟).

But 𝑢(𝒙) is a constant, which we move outside the outer integral in (5). We are left
with

𝑢 ∗ 𝜌𝛿(𝒙) = 𝑢(𝒙) ∫
𝛿

0
𝑟𝑛−1𝐴𝑛 ̊𝜌𝛿(𝑟) d𝑟 = 𝑢(𝒙) ∫

𝐵(0,𝛿)
𝜌𝛿(𝒛) d𝑛𝑧 = 𝑢(𝒙).

Since 𝑢 ∗ 𝜌𝛿 is 𝐶∞, then so is 𝑢, wherever 𝑢 ∗ 𝜌𝛿 is defined. By making 𝛿 as small as
we wish, we conclude that 𝑢 ∈ 𝐶∞(Ω), as was our goal.

The maximum principle

Definition. A 𝐶2 function 𝑢 is called subharmonic if Δ𝑢 ≥ 0, and superharmonic if
Δ𝑢 ≤ 0. Thus it is harmonic if and only if it is both subharmonic and superharmonic.
(The reason for the naming will become clear later; see Corollary 7.) Clearly, 𝑢 is
superharmonic if and only if −𝑢 is subharmonic.

Note that, in the one-dimensional case (𝑛 = 1), subharmonic functions are convex,
while superharmonic functions are concave.3 This is a great help to intuition – think
of this special case aswe explore the properties of sub- and superharmonic functions
below!

Theorem 5 (Strong maximum principle). Assume that 𝑢 ∈ 𝐶2(Ω) is subharmonic in
a region Ω ⊆ ℝ𝑛. If 𝑢 has a global maximum in Ω, then 𝑢 is constant.

Proof. Let 𝑀 be the global maximum of 𝑢, and put

𝑆 = { 𝒙 ∈ Ω | 𝑢(𝒙) = 𝑀 }.

Then 𝑆 is a closed subset ofΩ, by the continuity of 𝑢. It is also nonempty by assump-
tion.

Consider any 𝒙 ∈ 𝑆. From (4) and the subharmonicity of 𝑢, we get ̄𝑢′𝒙(𝑟) ≥ 0 for
𝑟 > 0. Thus we get ̄𝑢𝒙(𝑟) ≥ ̄𝑢𝒙(0) = 𝑢(𝒙) = 𝑀 for 𝑟 > 0 (so long as 𝐵(𝒙, 𝑟) ⊂ Ω). But
𝑢 ≤ 𝑀 everywhere, and if 𝑢 < 𝑀 anywhere on the sphere ∂𝐵(𝒙, 𝑟), we would get
̄𝑢𝒙(𝑟) < 𝑀. Thus 𝑢 = 𝑀 in some neighbourhood of 𝒙. This means that 𝑆 is open.
We have shown that 𝑆 is an open, closed, and nonempty subset of the connected

set Ω. Therefore 𝑆 = Ω, and the proof is complete.
3Or, as calculus textbooks perversely(?) call it, “concave up” and “concave down”, respectively.
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Harmonicfunctionology 5

Remark. Obviously, we obtain a strong minimum principle for superharmonic
functions by multiplying by −1. In particular, a non-constant harmonic function
cannot attain a minimum or maximum value anywhere in Ω.

Corollary 6 (Weak maximum principle). Let Ω ⊂ ℝ𝑛 be a bounded domain, and
assume that 𝑢 ∈ 𝐶(Ω) ∩ 𝐶2(Ω) is subharmonic. Then

max { 𝑢(𝒙) | 𝒙 ∈ Ω } = max { 𝑢(𝒙) | 𝒙 ∈ ∂Ω }.

In particular, a harmonic function which is continuous on Ω attains its minimum and
maximum values on the boundary ∂Ω.

Proof. The weak principle is an obvious consequence of the strong principle to-
gether with the existence of a maximum of the continuous function 𝑢 on the com-
pact set Ω.

However, it is worth noting that a much more elementary proof exists. Namely,
for any 𝜀 > 0, let 𝑣(𝒙) = 𝑢(𝒙) + 𝜀|𝒙|2, and note that then Δ𝑣 > 0. But Δ𝑣(𝒙) ≤ 0 if 𝒙
is an interior minimum point for 𝑣, so 𝑣 cannot have any maximum in the interior.
Thus for any 𝒙 ∈ Ω,

𝑢(𝒙) = 𝑣(𝒙) − 𝜀|𝒙|2 ≤ max
∂Ω

𝑣 ≤ max
∂Ω

𝑢 + 𝜀max
𝒙∈∂Ω

|𝒙|2.

Now let 𝜀 → 0 to arrive at the conclusion 𝑢(𝒙) ≤ max∂Ω 𝑢.

Our next result explains the terms sub- and superharmonic: A subharmonic func-
tion is below, and a superharmonic above, a harmonic function given the same
boundary data.

Corollary 7. Assume that Ω is a bounded domain, and that 𝑢, 𝑣 ∈ 𝐶(Ω)∩𝐶2(Ω), with
𝑢 harmonic in Ω. If 𝑣 is subharmonic and 𝑣 ≤ 𝑢 on ∂Ω, then 𝑣 ≤ 𝑢 in Ω, while if 𝑣 is
superharmonic and 𝑣 ≥ 𝑢 on ∂Ω, then 𝑣 ≥ 𝑢 in Ω.

Proof. Apply the weak maximum principle to 𝑣 − 𝑢 if 𝑣 is subharmonic, or to 𝑢 − 𝑣
if 𝑣 is superharmonic.

Remark. Corollary 7 suggests a strategy for proving existence of a solution to the
Dirichlet problem for the Laplace equation: Assumewe are trying to find a harmonic
function on Ω with the given boundary value 𝑔. Consider the pointwise supremum
of all subharmonic functions which are ≤ 𝑔 on ∂Ω, and the pointwise infimum of
all superharmonic functions which are ≥ 𝑔 on ∂Ω. If the two functions coincide,
they should provide a solution to the problem. This is the basis for Perron’s method,
which we will hopefully get a look at later.
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6 Harmonicfunctionology

The Poisson equation
We now turn our study to the Poisson equation:

−Δ𝑢 = 𝑓 (6)

where 𝑓 is a known continuous function. (It must be continuous to allow for clas-
sical, i.e., 𝐶2, solutions 𝑢.)

Referring all the way back to (2), we quickly get the following generalization of
Proposition 1:

Proposition 8. A 𝐶2 function 𝑢 on a domain Ω solves the Poisson equation (6) if and
only if

−∫
∂𝜔

∂𝑛𝑢(𝒙) d𝑆(𝒙) = ∫
𝜔
𝑓 (𝒙) d𝑛𝒙 (7)

for all bounded domains 𝜔 with 𝜔 ⊂ Ω having piecewise 𝐶1 boundary. It is sufficient
to consider balls 𝜔 = 𝐵(𝒙, 𝑟).

As an example, we consider a Poisson equation with a radially symmetric right
hand side 𝑓 (𝒙) = ̊𝑓 (|𝒙|). We expect to find a radially symmetric solution 𝑢(𝒙) =
̊𝑢(|𝒙|). Now (7) with 𝜔 = 𝐵(𝟎, 𝑟) becomes

−𝐴𝑛𝑟𝑛−1 ̊𝑢′(𝑟) = 𝐴𝑛 ∫
𝑟

0
̊𝑓 (𝑠)𝑠𝑛−1 d𝑠.

Taking the derivative and rearranging turns this into the ODE

−
1

𝑟𝑛−1
d
d𝑟
(𝑟𝑛−1 ̊𝑢′(𝑟)) = ̊𝑓 (𝑟). (8)

A direct calculation reveals that indeed,

Δ ̊𝑢(|𝒙|) = ̊𝑢″(|𝒙|) +
𝑛 − 1
|𝒙|

̊𝑢′(|𝒙|) =
1

𝑟𝑛−1
d
d𝑟
(𝑟𝑛−1 ̊𝑢′(𝑟))

|
|
|𝑟=|𝒙|

so a solution to (8) will in fact solve the Poisson equation in the radially symmetric
case.

The ODE (8) is easily integrated:

−𝑟𝑛−1 ̊𝑢′(𝑟) = ∫
𝑟

0
̊𝑓 (𝑠)𝑠𝑛−1 d𝑠 =

1
𝐴𝑛

∫
𝐵(𝟎,𝑟)

𝑓 (𝒙) d𝑛𝒙 =∶
𝑚(𝑟)
𝐴𝑛

.
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Harmonicfunctionology 7

If we let 𝑓 approach a Dirac’s 𝛿, we would end up with 𝑚(𝑟) = 1 for all 𝑟. Thus, after
integrating once more, we arrive at the solution 𝑢 = Φ, where Φ∶ ℝ𝑛 → ℝ is given
by

Φ(𝒙) =
− ln(|𝒙|)

2𝜋
for 𝑛 = 2,

Φ(𝒙) =
1

(𝑛 − 2)𝐴𝑛|𝒙|𝑛−2
for 𝑛 ≥ 3.

For 𝑛 ≥ 3, this gives the unique radially symmetric solution which vanishes at in-
finity; for 𝑛 = 2, however, no particular value of the dropped constant of integration
distinguishes itself.

Now, put 𝑚 = 1, replace 𝑓 (𝒙) by 𝜀−𝑛𝑓 (𝒙/𝜀), and let 𝜀 → 0. The resulting solution
𝑢 will converge pointwise to Φ (except at 𝒙 = 𝟎), while 𝑓 becomes a Dirac 𝛿 in the
limit. Thus we are tempted to conclude that

−ΔΦ = 𝛿

This is indeed true, but we first need to get into the theory of distributions in order
to understand the rigorous meaning of the above equation.

However, we can make one useful observation. The following lemma says pre-
cisely what you would expect, given Proposition 8 and −ΔΦ = 𝛿:

Lemma 9. Given a bounded region 𝜔 ⊂ ℝ𝑛 with piecewise 𝐶1 boundary and 𝟎 ∉ ∂𝜔,

∫
∂𝜔

∂𝑛Φd𝑆 = {
−1 if 𝟎 ∈ 𝜔,
0 if 𝟎 ∉ 𝜔.

Proof. The second case is a consequence of the harmonicity of Φ and Proposition 1.
For the first case, it is easily verified by direct calculation in the case of a ball 𝜔 =
𝐵(𝟎, 𝑟). In the general case for 𝟎 ∈ 𝜔, pick 𝑟 > 0 small enough so that 𝐵(𝟎, 𝑟) ⊂ 𝜔,
and apply the second case to 𝜔 ⧵ 𝐵(𝟎, 𝑟). Thus

0 = ∫
∂(𝜔⧵𝐵(𝟎,𝑟))

∂𝑛Φd𝑆 = ∫
∂𝜔

∂𝑛Φd𝑆 − ∫
∂𝐵(𝟎,𝑟)

∂𝑛Φd𝑆 = ∫
∂𝜔

∂𝑛Φd𝑆 + 1,

and the proof is complete. (The minus sign in the above calculation is because the
unit normal pointing out of 𝜔 ⧵ 𝐵(𝟎, 𝑟) at ∂𝐵(𝟎, 𝑟) points into 𝐵(𝟎, 𝑟).)

We call Φ the fundamental solution for the Poisson equation. Even lacking the
abstract theory, we can use it to solve the general Poisson equation.
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8 Harmonicfunctionology

Proposed solution to the Poisson equation:

𝑢(𝒙) = Φ ∗𝑓 (𝒙) = ∫
ℝ𝑛

Φ(𝒚)𝑓 (𝒙 − 𝒚) d𝑛𝒚 (9)

We expect this to solve the equation because formally, we get

−Δ𝑢 = −Δ(Φ ∗𝑓 ) = (−ΔΦ) ∗𝑓 = 𝛿 ∗𝑓 = 𝑓 .

However, this calculation is hard to justify by elementary means, but we can do it
with a bit of help from Proposition 8.

Theorem 10. Assume that 𝑓 ∈ 𝐶2𝑐 (ℝ𝑛). Then the function 𝑢 given by (9) is a solution
to the Poisson equation (6).

Proof. First, the assumptions imply that 𝑢 ∈ 𝐶2, since Φ is locally integrable. Let
𝜔 ⊂ ℝ𝑛 be a bounded domain with piecewise 𝐶1 boundary. Then we calculate:

−∫
∂𝜔

∂𝑛𝑢(𝒙) d𝑆(𝒙) = −∫
∂𝜔

∂𝑛(∫
ℝ𝑛

Φ(𝒙 − 𝒚)𝑓 (𝒚) d𝑛𝒚) d𝑆(𝒙)

= −∫
ℝ𝑛

𝑓 (𝒚)(∫
∂𝜔

∂𝑛Φ(𝒙 − 𝒚) d𝑆(𝒙)) d𝑛𝒚

= −∫
ℝ𝑛

𝑓 (𝒚)(∫
∂(𝜔−𝒚)

∂𝑛Φ(𝒛) d𝑆(𝒛)) d𝑛𝒚

∗= ∫
ℝ𝑛

𝑓 (𝒚)[𝟎 ∈ 𝜔 − 𝒚] d𝑛𝒚 = ∫
ℝ𝑛

𝑓 (𝒚)[𝒚 ∈ 𝜔] d𝑛𝒚

= ∫
𝜔
𝑓 (𝒚) d𝑛𝒚.

In the above calculation, 𝜔−𝒚 = { 𝒙 −𝒚 | 𝒙 ∈ 𝜔 }, and the square brackets are Iverson
brackets: For any statement 𝑆,

[𝑆] = {
1 if 𝑆 is true,
0 if 𝑆 is false.

We used Lemma 9 in the equality marked with an asterisk. By Proposition 8, the
proof is now complete.
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Harmonicfunctionology 9

A more conventional proof of Theorem 10

Our main tool is Green’s second identity. We often need to employ it on a region
containing the singularity of Φ, which is of course not allowed. So the trick is to
remove a ball centered on the singularity, use Green’s second identity on the rest of
the region, and then let the radius of the ball tend to zero. This leads to two limits
handled by the following two lemmas.

Lemma 11. If the function 𝑣 is continuous near 𝟎, then

−∫
∂𝐵(𝟎,𝑟)

𝑣 ∂𝑛Φd𝑆 = −∫
∂𝐵(𝟎,𝑟)

𝑣 d𝑆 → 𝑣(𝟎) as 𝑟 → 0.

Proof. The identity follows from the fact that the normal derivative on ∂𝐵(𝟎, 𝑟) is
the radial derivative, with the constant value ∂𝑛Φ = −1/(𝐴𝑛𝑟𝑛−1) on the sphere.
And then the limit follows by continuity of 𝑣.

Lemma 12. If the function 𝑣 is 𝐶1 near 𝟎, then

∫
∂𝐵(𝟎,𝑟)

Φ∂𝑛𝑣 d𝑆 → 0 as 𝑟 → 0.

Proof. The normal derivative ∂𝑛𝑣 is really 𝒏 ⋅ ∇𝑣, but 𝒏 is a unit vector, and ∇𝑣 is
bounded near 𝟎, since 𝑣 is assumed to be 𝐶1. Because the integral of |Φ| tends to
zero as 𝑟 → 0, the integral of the first term will vanish in the limit.

Theorem 13. Assume that 𝑓 ∈ 𝐶2𝑐 (ℝ𝑛). Then the function 𝑢 given by (9) is a solution
to the Poisson equation (6).

Proof. Thanks to translation invariance, we only need to prove that −Δ(Φ∗𝑓 )(𝟎) =
𝑓 (𝟎). (For any 𝒙0 ∈ ℝ𝑛, put ̄𝑓 (𝒙) = 𝑓 (𝒙0 + 𝒙). Then Φ ∗ ̄𝑓 (𝒙) = Φ ∗𝑓 (𝒙0 + 𝒙), so
−Δ(Φ ∗ ̄𝑓 )(𝟎) = ̄𝑓 (𝟎) implies −Δ(Φ ∗𝑓 )(𝒙) = 𝑓 (𝒙).)

First, we note that

∫
∂𝐵(𝟎,𝑟)

Φd𝑛𝒙 = {
−𝑟 ln 𝑟 for 𝑛 = 2,
𝑟/(𝑛 − 2) for 𝑛 ≥ 3.

Integrating this with respect to 𝑟, we conclude that Φ is integrable (meaning the
integral of |Φ| is finite) over 𝐵(𝟎, 𝑟), and hence over any bounded subset of ℝ𝑛. From
this, we conclude that not only is

𝑢(𝒙) = Φ ∗𝑓 (𝒙) = ∫
ℝ𝑛

Φ(𝒚)𝑓 (𝒙 − 𝒚) d𝑛𝒚
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10 Harmonicfunctionology

well defined, but 𝑢 is 𝐶2 as well, and in fact

Δ𝑢 = Φ ∗ Δ𝑓 .

This is easy if 𝑓 has compact support; it is also true if 𝑓 and its derivatives up to second order
vanish sufficiently fast at infinity, but we are not going to bother with this refinement.

In particular,

Δ𝑢(𝟎) = ∫
ℝ𝑛

Φ(𝒚) Δ𝑓 (−𝒚) d𝑛𝒚 = ∫
ℝ𝑛

Φ(𝒚) Δ𝑓 (𝒚) d𝑛𝒚

(using the symmetry of Φ to get rid of the minus sign for convenience). We want to
use Green’s second identity to move the Laplacian to Φ instead. But then we need
to restrict attention to a bounded region, and we need to avoid the singularity of
Φ at the origin. (It is this singularity that allows the answer to be non-zero, after
all.) Pick 𝑅 sufficiently large so 𝑓 (𝒚) = 0 for |𝒚| ≥ 𝑅, so that integrating over 𝐵(𝟎, 𝑅)
instead of ℝ𝑛 in the integral above does not change its value. Then, thanks to the
integrabilty of Φ near the origin, we find

Δ𝑢(𝟎) = lim
𝑟→0∫𝐵(𝟎,𝑅)⧵𝐵(𝟎,𝑟)

Φ(𝒚) Δ𝑓 (𝒚) d𝑛𝒚.

This integral can be transformed by Green’s second identity, resulting in

Δ𝑢(𝟎) = lim
𝑟→0

(∫
𝐵(𝟎,𝑅)⧵𝐵(𝟎,𝑟)

ΔΦ(𝒚)𝑓 (𝒚) d𝑛𝒚 + ∫
∂(𝐵(𝟎,𝑅)⧵𝐵(𝟎,𝑟))

(Φ∂𝑛𝑓 − 𝑓 ∂𝑛Φ) d𝑆).

The first integral vanishes because ΔΦ = 0, and in the second integral we can ignore
the outer boundary ∂𝐵(𝟎, 𝑅) because 𝑓 = ∂𝑛𝑓 = 0 there. Finally, the normal vector
𝑛 points inward on the inner boundary ∂𝐵(𝟎, 𝑟), so we get a sign change when we
consider the outward point normal instead. Thus we have

Δ𝑢(𝟎) = lim
𝑟→0∫∂𝐵(𝟎,𝑟)

(𝑓 ∂𝑛Φ − Φ∂𝑛𝑓 ) d𝑆.

The two preceding lemmas then yield Δ𝑢(𝟎) = −𝑓 (𝟎).
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Bounded domains and Green’s function. Let Ω be a bounded domain
with piecewise 𝐶1 boundary. The weakmaximum principle (even without the “nice”
boundary) immediately shows that the Dirichlet problem

−Δ𝑢 = 𝑓 in Ω,
𝑢 = 𝑔 on ∂Ω

(DP)

has at most one solution for any given data 𝑓 and 𝑔.
Our goal in this section is to generalize the representation formula (9) to this

setting. We first concentrate on homogeneous boundary data, i.e., 𝑔 = 0. It will turn
out that we get the case for 𝑔 ≠ 0 “for free”.

First, rewrite (9) to read

𝑢(𝒙) = ∫
ℝ𝑛

Φ(𝒙 − 𝒚)𝑓 (𝒚) d𝑛𝒚.

A similar formula for solutions on Ω might look like

𝑢(𝒙) = ∫
Ω
𝐺𝒚(𝒙)𝑓 (𝒚) d𝑛𝒚

instead. To ensure that this satisfies 𝑢 = 0 on ∂Ω, we want 𝐺𝒚(𝒙) = 0 for 𝒙 ∈ ∂Ω.
Apart from that, we want 𝐺𝒚(𝒙) (as a function of 𝒙) to be as much “like” Φ(𝒙 − 𝒚)
as possible. To make that precise:

Definition. Assume that, for each 𝒚 ∈ Ω, there exists a function 𝐻𝒚 ∈ 𝐶2(Ω)which
is harmonic in Ω and satisfies

𝐻𝒚(𝒙) = Φ(𝒙 − 𝒚) for 𝒙 ∈ ∂Ω.

By the maximum principle, this function is unique. Then the function 𝐺𝒚 defined by

𝐺𝒚(𝒙) = Φ(𝒙 − 𝒚) − 𝐻𝒚(𝒙)

is called the Green’s function associated with Ω. By construction, this function is 𝐶2
on Ω ⧵ { 𝒚 } and harmonic on Ω ⧵ { 𝒚 }, and it vanishes on ∂Ω.

To discover how this helps us write a solution formula for the Dirichlet problem,
we concentrate first on the Φ part.

For simplicity, assume that 𝒚 = 𝟎. If 𝜀 > 0 is small enough, 𝐵(𝟎, 𝜀) ⊂ Ω. Put
Ω𝜀 = Ω ⧵ 𝐵(𝟎, 𝜀), and apply Green’s second identity to Φ and an arbitrary function
𝑢 ∈ 𝐶2(Ω):

∫
Ω𝜀

(𝑢 ΔΦ − ΦΔ𝑢) d𝑛𝒙 = ∫
∂Ω𝜀

(𝑢 ∂𝑛Φ − Φ∂𝑛𝑢) d𝑆

= ∫
∂Ω
(𝑢 ∂𝑛Φ − Φ∂𝑛𝑢) d𝑆 − ∫

∂𝐵(𝟎,𝜀)
(𝑢 ∂𝑛Φ − Φ∂𝑛𝑢) d𝑆,
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12 Harmonicfunctionology

where theminus sign in front of the last integral is due to the direction of the normal
vector 𝒏 on ∂𝐵(𝟎, 𝜀) pointing out of the ball, whereas the normal vector on that part
of ∂Ω𝜀 points into the ball.

Now let 𝜀 → 0. The red term on the left is already zero, while the boundary
integral of the red term on the right will vanish in the limit by Lemma 12. Finally,
the integral of the green term will converge to −𝑢(𝟎) by Lemma 11, so we end up
with the representation formula

𝑢(𝒚) = −∫
Ω
ΦΔ𝑢 d𝑛𝒙 − ∫

∂Ω
(𝑢 ∂𝑛Φ − Φ∂𝑛𝑢) d𝑆, 𝒚 ∈ Ω. (10)

(We proved it only for 𝒚 = 𝟎, but translation invariance ensures that the result
generalizes. Or you could rerun the proof with Φ(𝒙) replaced by Φ𝒚(𝒙) = Φ(𝒙 − 𝒚)
and 𝐵(𝟎, 𝜀) by 𝐵(𝒚, 𝜀).)

Repeat the same calculation with Φ replaced by 𝐻𝒚. This is much easier, since 𝐻𝒚
is harmonic we do not need to remove a ball: Green’s second identity immediately
yields

∫
Ω
(𝑢 Δ𝐻𝒚 − 𝐻𝒚 Δ𝑢) d𝑛𝒙 = ∫

∂Ω
(𝑢 ∂𝑛𝐻𝒚 − 𝐻𝒚∂𝑛𝑢) d𝑆,

where again the red term vanishes. Rearranging this into

∫
Ω
𝐻𝒚 Δ𝑢 d𝑛𝒙 + ∫

∂Ω
(𝑢 ∂𝑛𝐻𝒚 − 𝐻𝒚∂𝑛𝑢) d𝑆 = 0

and adding it to the right hand side of (10), we obtain

𝑢(𝒚) = −∫
Ω
𝐺𝒚 Δ𝑢 d𝑛𝒙 − ∫

∂Ω
(𝑢 ∂𝑛𝐺𝒚 − 𝐺𝒚 ∂𝑛𝑢) d𝑆

where the red term is zero by construction, so we finally have

𝑢(𝒚) = −∫
Ω
𝐺𝒚 Δ𝑢 d𝑛𝒙 − ∫

∂Ω
𝑢 ∂𝑛𝐺𝒚 d𝑆, 𝒚 ∈ Ω.

We have proved

Theorem 14. If Ω ⊂ ℝ𝑛 is a bounded region with 𝐶1 boundary, and if Ω admits a
Green’s function 𝐺, then the solution 𝑢 ∈ 𝐶2(Ω) of (DP), if it exists, is given by

𝑢(𝒚) = ∫
Ω
𝐺𝒚(𝒙) 𝑓 (𝒙) d𝑛𝒙 − ∫

∂Ω
∂𝑛𝐺𝒚(𝒙) 𝑔(𝒙) d𝑆(𝒙), 𝒚 ∈ Ω. (11)

Notice the careful wording: We have not shown that the Dirichlet problem has a
solution. We have only shown what it must be, if it solves the problem.

We now show that Green’s function is symmetric.
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Harmonicfunctionology 13

Proposition 15. Assume thatΩ is a bounded region with piecewice 𝐶1 boundary, and
which admits a Green’s function. Then the Green’s function 𝐺 for this region satisfies
𝐺𝒚(𝒙) = 𝐺𝒙(𝒚), whenever 𝒙, 𝒚 ∈ Ω.

Proof. First a “physicists’ proof” to reveal the essentials: Since 𝐺𝒙 vanishes on ∂Ω
and −Δ𝐺𝒙(𝒛) = 𝛿(𝒛 − 𝒙), and similarly for 𝐺𝒚, Green´s second identity yields

0 = ∫
∂Ω
(𝐺𝒙 ∂𝑛𝐺𝒚 − 𝐺𝒚 ∂𝑛𝐺𝒙) d𝑆 = ∫

Ω
(𝐺𝒙 Δ𝐺𝒚 − 𝐺𝒚 Δ𝐺𝒙) d𝑛𝒛

= ∫
Ω
(−𝐺𝒙(𝒛)𝛿(𝒛 − 𝒚) + 𝐺𝒚(𝒛)𝛿(𝒛 − 𝒙)) d𝑛𝒛 = −𝐺𝒙(𝒚) + 𝐺𝒚(𝒙).

Our problem with this proof is that Green’s second identity, as we know it, requires
𝐶2 functions, which is not the case here. So we remove some small balls around the
troublesome points 𝒙 and 𝒚: Put Ω𝜀 = Ω ⧵ (𝐵(𝒙, 𝜀) − 𝐵(𝒚, 𝜀)), where 𝜀 > 0 is small
enough so that the two removed balls lie within Ω and have no point in common.

Now Δ𝐺𝒙 and Δ𝐺𝒚 are harmonic in Ω𝜀, so Green’s theorem is applicable:

0 = ∫
Ω𝜀

(𝐺𝒙 Δ𝐺𝒚 − 𝐺𝒚 Δ𝐺𝒙) d𝑛𝒛 = ∫
∂Ω𝜀

(𝐺𝒙 ∂𝑛𝐺𝒚 − 𝐺𝒚 ∂𝑛𝐺𝒙) d𝑆

= −(∫
∂𝐵(𝒙,𝜀)

+∫
∂𝐵(𝒚,𝜀)

)(𝐺𝒙 ∂𝑛𝐺𝒚 − 𝐺𝒚 ∂𝑛𝐺𝒙) d𝑆,

where we dropped the integral over ∂Ω, because the integrand is zero there. The
minus sign is due to the reversed direction of the normal vector on the boundary of
the balls versus the boundary ofΩ𝜀. We have already dealt with this sort of boundary
integral in the proof of Theorem 14, so here we go again! Look at the first of the
two boundary integrals above:

∫
∂𝐵(𝒙,𝜀)

(𝐺𝒙 ∂𝑛𝐺𝒚 − 𝐺𝒚 ∂𝑛𝐺𝒙) d𝑆.

The integral of the red term is zero, for 𝐺𝒙 is constant on ∂𝐵(𝒙, 𝜀), and

∫
∂𝐵(𝒙,𝜀)

∂𝑛𝐺𝑦 d𝑆 = ∫
𝐵(𝒙,𝜀)

Δ𝐺𝑦 d𝑛𝒛 = 0

by the divergence theorem. Evenwithout harmonicity, this would vanish in the limit
as 𝜀 → 0.

For the green term, note that −∂𝒚𝐺𝒙 = 1/(𝐴𝑛𝜀𝑛−1) on ∂𝐵(𝒙, 𝜀), so together with
the above calculation we get

∫
∂𝐵(𝒙,𝜀)

(𝐺𝒙 ∂𝑛𝐺𝒚 − 𝐺𝒚 ∂𝑛𝐺𝒙) d𝑆 = −∫
∂𝐵(𝒙,𝜀)

𝐺𝒚 d𝑆 → 𝐺𝒚(𝒙) as 𝜀 → 0.
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14 Harmonicfunctionology

Similarly,

∫
∂𝐵(𝒚,𝜀)

(𝐺𝒙 ∂𝑛𝐺𝒚 − 𝐺𝒚 ∂𝑛𝐺𝒙) d𝑆 = −∫
∂𝐵(𝒚,𝜀)

𝐺𝒙 d𝑆 → 𝐺𝒙(𝒚) as 𝜀 → 0,

and the proof is complete.

Remark. A different take the proof of symmetry of Green’s function:
Let 𝑓 , 𝑔 ∈ 𝐶(Ω), and let 𝑢, 𝑣 solve −Δ𝑢 = 𝑓 and −Δ𝑣 = 𝑔 in Ω, 𝑢 = 𝑣 = 0 on ∂Ω.

Thus
𝑢(𝒚) = ∫

Ω
𝐺𝒚(𝒙) 𝑓 (𝒙) d𝑛𝒙, 𝑣(𝒚) = ∫

Ω
𝐺𝒚(𝒙) 𝑔(𝒙) d𝑛𝒙.

Since 𝑢 and 𝑣 vanish on ∂Ω, Green’s second identity applied to 𝑢 and 𝑣 implies

∫
Ω
𝑢(𝒚)𝑔(𝒚) d𝑛𝒚 = ∫

Ω
𝑣(𝒚)𝑓 (𝒚) d𝑛𝒚.

Plugging in the above formulas for 𝑢 and 𝑣, swapping the integration variables 𝒙
and 𝒚 in one of the integrals, and rearranging, we get

∫
Ω
∫
Ω
(𝐺𝒚(𝒙) − 𝐺𝒙(𝒚))𝑓 (𝒙)𝑔(𝒚) d𝑛𝒙 d𝑛𝒚 = 0,

fromwhich the desired conclusion quickly follows. (Take 𝑓 and 𝑔 to be approximate
delta functions concentrated near two different points in Ω.)

It may be interesting to study the above argument from an elementary linear algebra
point of view. The last part resembles the proof that, if 𝐴 is a quadratic matrix satisfying
𝑦𝑇𝐴𝑥 = 𝑥 𝑡𝐴𝑦 for all vectors 𝑥 and 𝑦, then 𝐴 is symmetric. (Just take 𝑥 = 𝑒𝑖 and 𝑦 = 𝑒𝑗.) The
first part resembles the proof that the inverse of an invertible symmetric matrix is symmetric.
Think of the “matrix” 𝐺𝒙(𝒚) (where 𝒙 and 𝒚 play the rôles of matrix indices) as the inverse
of the operator −Δ. And the symmetry of this operator is just the identity ∫Ω 𝑢 Δ𝑣 = ∫Ω 𝑣 Δ𝑢.
(Green’s second identity, when both functions vanish on the boundary.)

Green’s function for balls. Here we compute Green’s function for the open unit
ball 𝔹𝑛 = 𝐵(0, 1) in ℝ𝑛. I will drop some exponents and write 𝔹 instead of 𝔹𝑛 and 𝕊
instead of 𝕊𝑛−1 for the unit sphere ∂𝔹.

If 𝒚 ∈ 𝔹, we need to find a harmonic function on 𝔹 with the same values as
Φ(𝒙 − 𝒚) for 𝒙 ∈ 𝕊. The trick is to “put a charge” at a suitable point 𝒘 outside 𝔹. It
turns out that 𝒘 = 𝒚/|𝒚|2 does the trick. Since |𝒙| = 1, we find

|𝒙 − 𝒚|2 = 1 + |𝒚|2 − 2𝒙 ⋅ 𝒚

and

|𝒙 − 𝒘|2 = 1 + |𝒘|2 − 2𝒙 ⋅ 𝒘 = 1 +
1
|𝒚|2

− 2
𝒙 ⋅ 𝒚
|𝒚|2

=
|𝒚 − 𝒙|2

|𝒚|2
,
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so that

|𝒘 − 𝒙| =
|𝒚 − 𝒙|
|𝒚|

.

For 𝑛 ≥ 3, this gives

Φ(𝒘 − 𝒙) =
1

(𝑛 − 2)𝐴𝑛|𝒘 − 𝒙|𝑛−2
= |𝒚|𝑛−2Φ(𝒚 − 𝒙),

so we should put

𝐻𝒚(𝒙) =
Φ(𝒘 − 𝒙)
|𝒚|𝑛−2

=
1

(𝑛 − 2)𝐴𝑛|𝒚|𝑛−2|𝒘 − 𝒙|𝑛−2

where we note that

|𝒚|2|𝒘 − 𝒙|2 = |𝒚|2(|𝒘|2 + |𝒙|2 − 2𝒙 ⋅ 𝒘) = 1 + |𝒙|2|𝒚|2 − 2𝒙 ⋅ 𝒚,

so we get

𝐺𝒚(𝒙) =
1

(𝑛 − 2)𝐴𝑛
(

1
|𝒙 − 𝒚|𝑛−2

−
1

(1 + |𝒙|2|𝒚|2 − 2𝒙 ⋅ 𝒚)(𝑛−2)/2
) (𝑛 ≥ 3)

which is indeed symmetric in 𝒙, 𝒚 as expected.

Next, the same computation for 𝑛 = 2: We find (when 𝒙 ∈ 𝕊)

Φ(𝒘 − 𝒙) = −
ln|𝒘 − 𝒙|

2𝜋
=

ln|𝒚|
2𝜋

+ Φ(𝒚 − 𝒙),

so we put

𝐻𝒚(𝒙) = −
ln|𝒚|
2𝜋

+ Φ(𝒘 − 𝒙) = −
ln(|𝒚||𝒘 − 𝒙|)

2𝜋
and get

𝐺𝒚(𝒙) = −
ln|𝒚 − 𝒙|

2𝜋
+
ln(1 + |𝒙|2|𝒚|2 − 2𝒙 ⋅ 𝒚)

4𝜋
(𝑛 = 2)

which is again symmetric. We can also write this on the form

𝐺𝒚(𝒙) = −
ln(|𝒙|2 + |𝒚|2 − 2𝒙 ⋅ 𝒚)

4𝜋
+
ln(1 + |𝒙|2|𝒚|2 − 2𝒙 ⋅ 𝒚)

4𝜋
(𝑛 = 2)
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16 Harmonicfunctionology

When solving the Dirichlet problem on the unit disk 𝔻 ⊂ ℝ2, we need the normal
derivative ∂𝑛𝐺𝒚(𝒙) for 𝒙 ∈ 𝕊 which is simply the derivative of 𝐺𝒚(𝑡𝒙) taken at 𝑡 = 1,
resulting in

∂𝑛𝐺𝒚(𝒙) =
−2 + 2𝒙 ⋅ 𝒚 + 2|𝒚|2 − 2𝒙 ⋅ 𝒚

4𝜋(1 + |𝒚|2 − 2𝒙 ⋅ 𝒚)
=

|𝒚|2 − 1
2𝜋(1 + |𝒚|2 − 2𝒙 ⋅ 𝒚)

.

If we put 𝑟 = |𝒚| and let 𝜃 be the angle between the two vectors 𝒙 and 𝒚, we get

−∂𝑛𝐺𝒚(𝒙) =
1
2𝜋

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos 𝜃

which is known as the Poisson kernel. Referring back to (11), the solution to the
Dirichlet problem −Δ𝑢 = 0 on𝔻with 𝑢(cos 𝜃, sin 𝜃) = 𝑔(𝜃) should then be given by

𝑢(𝑟 cos 𝜑, 𝑟 sin 𝜑) =
1 − 𝑟2

2𝜋 ∫
𝜋

−𝜋

𝑔(𝜑 − 𝜃)
1 + 𝑟2 − 2𝑟 cos 𝜃

d𝜃

This is known as Poisson’s integral formula. It was originally derived using separa-
tion of variables and a Fourier analysis:

For this, we may note that the Laplace operator in polar coordinates takes the
form

Δ𝑢 = 𝑟−1(𝑟𝑢𝑟)𝑟 + 𝑟−2𝑢𝜃𝜃.

We look for harmonic functions of the form 𝑢 = 𝑅(𝑟)Θ(𝜃), resulting in 𝑟−1(𝑟𝑅′)′Θ+
𝑟−2𝑅Θ″ = 0. After separating the variables, we are left withΘ″ = −𝜆Θ and (𝑟𝑅′)′ =
𝜆𝑟−1𝑅. Since Θ must be 2𝜋-periodic, we must put 𝜆 = 𝑛2 for an integer 𝑛, so the 𝑅
equation is 𝑟(𝑟𝑅′)′ = 𝑛2𝑅. We try 𝑅 = 𝑟𝑘, and get 𝑟𝑅′ = 𝑘𝑟𝑘, 𝑟(𝑟𝑅′)′ = 𝑘2𝑟𝑘, with
the non-trivial solutions 𝑘 = ±𝑛. Rejecting solutions with negative 𝑘 (which have a
singularity at 𝑟 = 0), we are therefore left with 𝑅 = 𝑟 |𝑛|. Thus we are led to look for
solutions of the form

𝑢(𝑟 cos 𝜑, 𝑟 sin 𝜑) =
∞
∑
𝑛=−∞

𝑐𝑛𝑟 |𝑛|𝑒𝑖𝑛𝜑.

Matching this to 𝑔(𝜃) at 𝑟 = 1, we should have

𝑐𝑛 =
1
2𝜋 ∫

𝜋

−𝜋
𝑔(𝜃)𝑒−𝑖𝑛𝜃 d𝜃,

and therefore

𝑢(𝑟 cos 𝜑, 𝑟 sin 𝜑) =
1
2𝜋 ∫

𝜋

−𝜋

∞
∑
𝑛=−∞

𝑔(𝜃)𝑟 |𝑛|𝑒𝑖𝑛(𝜑−𝜃) d𝜃. =
1
2𝜋 ∫

𝜋

−𝜋
𝑔(𝜃)𝑃(𝑟 , 𝜑 − 𝜃) d𝜃,
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where

𝑃(𝑟 , 𝜃) =
1
2𝜋

∞
∑
𝑛=−∞

𝑟 |𝑛|𝑒𝑖𝑛𝜃.

Here we note that ∞
∑
𝑘=0

𝑟𝑘𝑒±𝑖𝑘𝜃 =
1

1 − 𝑟𝑒±𝑖𝑘𝜃
,

so

𝑃(𝑟 , 𝜃) =
1
2𝜋

(
1

1 − 𝑟𝑒𝑖𝑘𝜃
+

1
1 − 𝑟𝑒−𝑖𝑘𝜃

− 1)

=
1
2𝜋

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos 𝜃
,

which we recognize as the Poisson kernel introduced above.

Notation used in this document. The partial derivative of a function 𝑓
with respect to 𝑠 is more often than not shortened from the conventional ∂𝑓 /∂𝑠 to
∂𝑠𝑓. The outer unit normal vector of a region Ωwith 𝐶1 boundary is written 𝒏.4 The
normal derivative of a 𝐶1 function 𝑢 on Ω is written ∂𝑛𝑢 = 𝒏 ⋅ 𝑢. The Laplacian
of 𝑢 is written Δ𝑢 = ∇ ⋅ ∇𝑢. We use the “barred” integral sign −∫ to indicate an
average, defined to be the ordinary integral divided by the total measure (length,
area, or volume) of the region of integration. Thus nomatter what we integrate over,
−∫𝐷 1 d𝑥 = 1. We write 𝐴𝑛 for the area of the unit sphere 𝕊𝑛−1 of ℝ𝑛. Thus a sphere
of radius 𝑟 has area 𝐴𝑛𝑟𝑛−1, and the volume of a ball of radius 𝑟 in ℝ𝑛 (obtained by
integrating 𝐴𝑛𝑟𝑛−1) is 𝐴𝑛𝑟𝑛/𝑛.

4The Greek letter 𝝂 is commonly used for this, but in the font used in this note, that is almost indis-
tuingishable from the latin letter 𝒗.
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