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Functions in the Sobolev space H'(Q), where Q C R" is a region, are really only
equivalence classes of functions, where equivalent functions are equal almost ev-
erywhere, so it is not at all clear that it makes sense to speak of boundary values of
such functions (since the boundary of Q usually has measure zero). Nevertheless, it
turns out it does make sense, though we prefer to use the phrase boundary trace to
avoid confusion with more conventional boundary values.

We will build on the following result, which we shall not prove here.

Theorem 1 (Meyers—Serrin [1]). C*®(R") n W™P(Q) is dense in W™P(Q).

By C*(R")nW™P(Q), we really mean the space of functions in W™#(Q) which can be extended
to C* functions on R".

The formulation in [1] is slightly different. The closure in W™?(Q) of C*(R")nW™?(Q) was
commonly denoted H™P(Q), but Meyers and Serrin proved that these spaces are the same.
Hence the amazingly brief title of the paper. Today, as this result is now well known, we use
the letter H for a different purpose: H™(Q) = W™(Q).

The result of interest is the following:

Theorem 2 (The boundary trace theorem). Assume that the region Q C R" has a
piecewise C! boundary. Then, for 1 < p < oo, there exists a unique continuous map
7: WHP(Q) — LP(3Q) so that 7(flo) = flaq for all f € CP(R™) n WHP(Q).

Proof of a special case. We prove the theorem for the “half space” Q = R"™! x (0, c0),
with the boundary 3Q = R"! x {0}, and only for p = 2.

But first, we note that the uniqueness of the boundary trace map 7 follows from
Theorem 1, even in the general case. Moreover, in the general case, all that is needed
for the existence proof is the continuity of the map flo — flyq on C*(R"), ie., an
estimate of the form | flaalz2(a0) < Cl flolm(q), which we shall write more briefly

1flz200) < Clfla )

We now set about to prove such an estimate for the half space.

We need a “smooth cutoff function” k € C*(R) with k(y) = 1 for y < 0 and
k(y)=0fory>1.

Then, for any f € C*(R"), we find

1 1
~f(x,0) = L 0,(f(x, y(y)) dy = L (FGe R () + e y(»)) .

leading to
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Now integrate this with respect to x to get
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where C = max(|x[y, [«’[,). This proves the required estimate, and hence the proof
for the half space. ]

The proof of the general case [2] is beyond the scope of this note. In rough outline,
however, one proceeds by locally rectifying the boundary - introducing a coordi-
nate change transforming the boundary into the hyperplane R*~! x {0}, thus re-
ducing the general case to the case just proved. A “partition of unity” argument is
needed to complete the proof.!

Recall the definition of HO1 (Q) as the closure in H(Q) of C°(Q). It is an easy exercise
to verify that the boundary trace of any function in Hi(Q) is zero. The converse is
also true, though we shall not prove it here: If the boundary trace of some function
is zero, then that function belongs to H(Q). This helps to explain the importance
of H}(Q) in applications.
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!Partition of unity arguments are commonly used in topology and differential geometry to convert
local results to global ones.



