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More general quasilinear equations
Here we look at the general quasilinear equation in two dimensions:

𝑎𝑢𝑥 + 𝑏𝑢𝑦 = 𝑐, (1)

in which 𝑎, 𝑏, and 𝑐 are really 𝑎(𝑥, 𝑦, 𝑢(𝑥, 𝑦)), 𝑏(𝑥, 𝑦, 𝑢(𝑥, 𝑦)), and 𝑐(𝑥, 𝑦, 𝑢(𝑥, 𝑦)).
(It is the dependence of the coefficients on𝑢 thatmakes the equations quasilinear.)
Consider any smooth curve (𝑥(𝑡), 𝑦(𝑡)). Then, assuming 𝑢 is a classical solu-

tion of (1), we put 𝑧(𝑡) = 𝑢(𝑥(𝑡), 𝑦(𝑡)), and find

𝑧′(𝑡) = 𝑥′(𝑡)𝑢𝑥 + 𝑦′(𝑡)𝑢𝑦

so that if 𝑥′(𝑡) = 𝑎 and 𝑦′(𝑡) = 𝑏, then

𝑧′ = 𝑎𝑢𝑥 + 𝑏𝑢𝑦 = 𝑐.

This all means that (𝑥, 𝑦, 𝑧) satify the characteristic equations

𝑥′(𝑡) = 𝑎(𝑥, 𝑦, 𝑧), 𝑦′(𝑡) = 𝑏(𝑥, 𝑦, 𝑧), 𝑧′(𝑡) = 𝑐(𝑥, 𝑦, 𝑧). (2)

To summarize so far: Assume that 𝑢 is a classical solution of (1). Through each
point in the graph of 𝑢,

graph(𝑢) = { (𝑥, 𝑦, 𝑧) | 𝑧 = 𝑢(𝑥, 𝑦) },

there passes a characteristic curve (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) solving (2). Moreover, each such
characteristic curve will lie within the graph of 𝑢.

The solution strategy for (1) can now be explained: Since the graph of a clas-
sical solution is a union of characteristic curves, we try to construct solutions by
putting together characteristic curves.
The graph of 𝑢 will be two-dimensional, and a characteristic curve is one-

dimensional; so it makes sense to use another variable to keep track of the char-
acteristic curves.
In other words, to construct a solution, we look for three functions 𝑥(𝑠, 𝑡),

𝑦(𝑠, 𝑡), 𝑧(𝑠, 𝑡) which parametrize a characteristic curve as function of 𝑡 for each
𝑠. In other words, they should satisfy

𝑥𝑡 = 𝑎, 𝑦𝑡 = 𝑏, 𝑧𝑡 = 𝑐
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where, as always, 𝑎, 𝑏, and 𝑐 are considered functions of 𝑥, 𝑦, and 𝑧.1 Additionally,
we assume that these are 𝐶1 functions, and that (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) has a 𝐶1 inverse,
mapping (𝑥, 𝑦) to (𝑠, 𝑡). Then we can define 𝑢 by

𝑢(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) = 𝑧(𝑠, 𝑡).

Differentiating this equation with respect to 𝑡 yields 𝑥𝑡𝑢𝑥 + 𝑦𝑡𝑢𝑦 = 𝑧𝑡, which is
the same as (1).
To make this construction more concrete, putting 𝑡 = 0 yields a paramet-

ric curve 𝛾 in the (𝑥, 𝑦)-plane: (𝑥(𝑠, 0), 𝑦(𝑠, 0)), or, if we add a coordinate, a
curveΓ in graph(𝑢) parametrized as (𝑥(𝑠, 0), 𝑦(𝑠, 0), 𝑧(𝑠, 0)). The requirement that
(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) has a𝐶1 inverse implies that thematrix ( 𝑥𝑠 𝑥𝑡𝑦𝑠 𝑦𝑡 ) is non-singular. At
𝑡 = 0 this simplymeans that Γ is not tangent to the characteristic curves.We refer
to this as the non-characteristic condition.
We now see what is a natural condition to impose in order to obtain a unique

solution to (1): Namely, given a curve 𝛾 in the (𝑥, 𝑦)-plane, and a function 𝑔 on 𝛾,
assume that the curve Γ given by points (𝜉, 𝜂, 𝜁) with (𝜉, 𝜂) on 𝛾 and 𝜁 = 𝑔(𝜉, 𝜂)
satisfies the non-characteristic condition. Then (1) has a solution 𝑢 satisfying the
condition

𝑢 = 𝑔 on 𝛾. (3)

This solution will exist on a neighbourhood of 𝛾, and be unique there. (Though
we must be careful with any end points of 𝛾: They should not be points on 𝛾
themselves, as we would then be obliged to extend the solution beyond the end
of 𝛾.)

A problem of the form (1) with (3) is called a Cauchy problem for (1). More generally, a
Cauchy problem for a PDE is the problem of solving the PDE alongwith certain conditions
along a curve, or more generally a hypersurface. Often, as is the case here, the PDE more
or less dictates the proper form of the Cauchy problem after some analysis.

1Well, they were functions of 𝑥, 𝑦, and ᵆ, right? But in this solution, we should think of ᵆ and 𝑧
as being the same. We write ᵆ when we emphasize the solution ᵆ(𝑡, 𝑥), but 𝑧 when we think of the
characteristic curves, as in 𝑧(𝑡) or 𝑧(𝑠, 𝑡). After you have gained some experience, you may find it
easier to forget about 𝑧 and just write ᵆ. But this may be too confusing in the beginning.
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Time to collision
Here we consider an IVP (initial value problem) for a quasilinear equation:

𝑢𝑡 + 𝑎(𝑢)𝑢𝑥 = 0, 𝑢(0, 𝑥) = 𝑔(𝑥) (4)

where the PDE is supposed to hold for 𝑡 > 0, and 𝑔∶ ℝ → ℝ is given. For sim-
plicity, we will assume that 𝑎 and 𝑔 are 𝐶1 functions.
The characteristic equations will be

𝑥′(𝑡) = 𝑎(𝑢(𝑡)), 𝑢′(𝑡) = 0.

To fit with the framework of the more general quasilinear equation, we really should
choose a different parameter, say, ̂𝑡, for the characteristic, and write 𝑡′( ̂𝑡) = 1, 𝑥′( ̂𝑡) =
𝑎(𝑥( ̂𝑡)), and 𝑢′( ̂𝑡) = 0. But the first equation, along with the natural choice 𝑡(0) = 0,
yields 𝑡( ̂𝑡) = ̂𝑡: So we can (and do) just skip all that, and go for 𝑡 as the parameter on the
characteristic curves right away.

By the second equation, 𝑢 is constant along any characteristic, and hence so
is 𝑥′, by the first equation. Thus 𝑥(𝑡) has the form 𝑥(𝑡) = 𝑐𝑡 + 𝜉 for constants 𝑐
and 𝜉. Setting 𝑡 = 0 and recalling that 𝑢(𝑡) should really be 𝑢(𝑡, 𝑥(𝑡)), we obtain
𝑐 = 𝑥′(𝑡) = 𝑥′(0) = 𝑎(𝑢(0, 𝑥(0))) = 𝑎(𝑔(𝜉)). Writing

𝑐(𝜉) = 𝑎(𝑔(𝜉)),

we conclude that the characteristics have the form

𝑥 = 𝑐(𝜉)𝑡 + 𝜉, (5)

and since 𝑢 is constant along this characteristic, we must have

𝑢(𝑡, 𝑥) = 𝑔(𝜉). (6)

To find 𝑢(𝑡, 𝑥) from (6), we need to solve (5) with respect to 𝜉 for given (𝑡, 𝑥).
Taking the derivative in (5), we get

𝜕𝑥
𝜕𝜉

= 1 + 𝑡𝑐′(𝜉).

If 𝑐′(𝜉) ≥ 0 for all 𝜉, it is clear that (5) can be solved with respect to 𝜉 for all 𝑥 ∈ ℝ
and 𝑡 ≥ 0.
If 𝑐′(𝜉) < 0 for some 𝜉, however, then we cannot do this when 𝑡 is too large.

Clearly, the critical time in this case is

𝜏 = −1
inf
𝜉∈ℝ

𝑐′(𝜉)
.
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When 0 < 𝑡 < 𝜏, we can solve (5) for 𝜉, while when 𝑡 > 𝜏, we cannot.
Thus 𝜏 is the first time of collision of the characteriestics, after which there is

no longer a classical solution.

The general quasilinear equation in higher dimensions
We can do the exact same procedure, with the same arguments, in 𝑛 dimensions
as we did in first section of this note. Here we summarize the construction very
briefly.
A general quasilinear equation then takes the form

𝐚(𝐱, 𝑢(𝐱)) ⋅ ∇𝑢(𝐱) = 𝑐(𝐱, 𝑢(𝐱)), 𝐱 ∈ ℝ𝑛, (7)

with given functions 𝐚 and 𝑐.
The characteristic equations become

𝐱′(𝑡) = 𝐚(𝐱(𝑡), 𝑧(𝑡)), 𝑧′(𝑡) = 𝑐(𝐱(𝑡), 𝑧(𝑡)),

or written in a more compact form:

𝐱′ = 𝐚(𝐱, 𝑧), 𝑧′ = 𝑐(𝐱, 𝑧). (8)

Assume now that we are given the PDE (7) with the extra condition

𝑢(𝝃) = 𝑔(𝝃), 𝝃 ∈ 𝛾, (9)

where 𝛾 ⊂ ℝ𝑛 is a hypersurface, i.e., a surface of dimension 𝑛 − 1. The non-
characteristic condition now says that 𝐚(𝝃, 𝑔(𝝃)) is not tangent to 𝛾 for any 𝜉 ∈ 𝛾.
For any 𝝃 ∈ 𝛾, standard ODE theory guarantees the existence of a solution of

(8) satisfying 𝐱(0) = 𝝃 and 𝑧(0) = 𝑔(𝝃).Write (𝐱(𝑡; 𝝃), 𝑧(𝑡; 𝝃)) for this solution, and
define

𝑢(𝐱(𝑡; 𝝃)) = 𝑧(𝐱(𝑡; 𝝃)), 𝜉 ∈ 𝛾,

where again, we can show that this is well defined (for 𝑡 sufficiently close to 0) by
using the inverse function theorem. Further, the 𝑛+1 variables 𝑡, 𝝃 are essentially
only 𝑛 variables, because 𝛾 is (𝑛 − 1)-dimensional. The proof that this produces
a classical solution is similar to the 2-dimensional case.
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