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Energy density and energy flow

In this note we study the wave equation
uy — 2 Au=f, 1)

where the unknown function u is a function of n + 1 variables: u(t,x) fort € R
and x € R". In general, the “force term” on the right hand side may have the
form f(¢,x, u,u;, Vu), but in most cases it will depend on ¢ and x only.

In the lectures, I will put ¢ = 1. The general case can easily be reduced the case ¢ = 1
by scaling, but in this note, we retain the general wave speed ¢ > 0 anyhow.

Assuming u satisfies (1), we associate with u an energy density
e(t,x) = 3 (u + ¢ Vul?), ©)
from which we compute (using (1))
e, = iy + Vu - Vu, = cu, A u+u f +c*Vu - Vu,,

which we can write in the form

e+ V-q=uf, 3

where the energy flux density is
q = —c*u,Vu.

We can think of (3) as an energy balance equation, where the right hand side c?u, f
represent the work done by the force f. (Note that in physics, force times velocity
equals power.)

A very useful inequality arises from the trivial inequality (a — b)> > 0 by ex-
panding the square and reorganising it in the form 2ab < (a? + b?). Replacing a
and b by their absolute values, we can also write this as 2|ab| < (a? + b?).

In particular, since |q| = c?|u;||Vu|, putting a = u, and b = ¢|Vu| and taking
a quick look at (2) reveals that

gl < ce, @)

which we can loosely interpret as follows: Energy does not travel faster than the
wave speed c. We now make this precise.

Domain of dependence
Consider the PDE (1) with initial data
u(0,x) = g(x), u;(0,x) = h(x). ©)

We consider some (¢4, x) with ¢y, > 0, and ask the following question: What part
of the initial data, and force term f (if there is one), influences the solution at
(tO’ xO)?

To answer this question, consider the region

Qoo = {6, X)|0 <t <1, |x— x| <ty —1)}.

Think of it as a ball centered at x, with a radius shrinking at wave speed ¢, and
which vanishes at t = t;:

Quxy = | (11X B(xg.clty — 1)).

O<t<ty

Since the ball shrinks so rapidly, (4) tells us that no new energy can enter from
outside, so the total energy should decrease, unless of course the force term adds
extra energy.

So we define the energy inside the ball as

B(t) = f e(t,x)d"x,
B(xo,c(to—t))

and compute:

% f e/t %) d"x — ¢ / e(t, %) dS(x)
B(xg,c(to—t)) 0B(x0,c(to—t))
B

(=Yg +u,f)d"x —c f o(t,%) dS(x)
0B (x¢,c(to—t))

(x0,c(to—1))

=—f (v-q+ce)d”x+f u fdx.
0B (xq,c(to—t)) B(xq,c(to—1))

Now (4) tells us that the integrand of the boundary integral is nonnegative, so we

conclude that
dé

a < f u, fd"x. (6)
B(xo,c(to—t))

In the simplest case, f = 0on Q, . ,and then (6) tells us that € is non-increasing.



Theorem 1 Assume that u; and u, are classical solutions of

Oy — 2 A u; = fit, %),
1;(0,x) = gi(x), fori=1,2;
0,u;(0,x) = hy(x),
further assume that g,(x) = g,(x) and hy(x) = hy(x) for all x € B(x,cty), and
that fi(t,x) = f5(t,x) for all (¢, x) € Q; x,. Then u;(ty, Xo) = uy(to, Xo)-

Proof: Letu = u; —u,. Then u satisfies (1) with f = f; — f, and initial values (5)
where g =g, —g,and h = h; — h,.

Now apply the calculation on the previous page: Since g = 0 and h = 0 on
B(xo) and f = 0 on Q, . ,we find first that €(0) = 0, and second, using (6),
that € is non-increasing. Thus €(t) = 0 for all ¢ € [0, t,]. In particular u, = 0
inside Q;_ ,, 80 u(ty, xXo) = u(0,%x,) = g(x,) = 0. We conclude that u, (¢, Xo) =
(o, Xo)- '

Solution dependent forcing term. We can prove an analogue of Theorem 1 for
more complicated right hand sides:

Theorem 2 Assume the same conditions as in Theorem 1, with these changes:
The PDE is now assumed to have the form

0wy — 2 Ay = fi(t, x,u,(t,x), Vu(t, x)).

The conditions on f; and f, are replaced by the requirement that there exists a con-
stant L so that

[A(t, x, 01, wy) = (8, %, 05, wp)| < L(Jvg — 0] + [wy — wy|) 7

Jorall (t,x) € Q ., andallv;, v, € R and w;, w; € R™
Then, once more, u,(ty, Xg) = Uy(tg, Xp)-

Proof: Again, let u = u; — u,. Then u satisfies the equation

ut — > Au= fi(t,x,8u,(t, %), Vuy (1, %)) — fo(t, %, 8;u,(t, x), Vuy(t, X)),
ft,x)

and so the associated energy satisfies (6):

% 5/ u,fd"x.
B(xo,c(to—t))

Here we note that
£t %)) < L(10y — 8] + |Vuy = Vatg|) = L(Ju| + V],

se we get
[u f| < L(uf + |u,Vu|) < gL(uf + |Vul?) = 3Le.

Now we integrate, and conclude that

dg€
a < 3LE,

and therefore p
—3Lt <
d[(e ) <0

From €(0) = 0 we then conclude é(¢t,) = 0, and the proof is completed in the
same way as the proof of Theorem 1. '

Let us have a second look at the somewhat mysterious equation (7). First, with
U; = U, and w; = w,, it implies that

.fi(t!x7' s ) = fZ(t’x! ) )

Given this relation, (7) boils down to Lipschitz continuity in the v = u; and w =
Vu variables:

|fl(t’x7 Ul’wl) - fl(t’x’ U2, w2)| < L(|vl - UZ| + |w1 - w2|)

This holds if the partial derivatives of f; with respect to v and w are bounded.

Final remark. Note that we have not proved existence of solutions to the prob-
lem being studied. But we now know that a solution, if it exists, is unique.



