Weak maximum principle for the heat equation

Harald Hanche-Olsen

In this note, we consider the standard heat equation

$$
u_{t}-\triangle u=0 \quad \text { in } \Omega_{T}
$$

in which $\Omega_{T}=(0, T) \times \Omega$ where $\Omega \subset \mathbb{R}^{n}$ is a bounded region, $T>0$, and

$$
u \in C\left(\overline{\Omega_{T}}\right) \cap C^{2}\left(\Omega_{T}\right)
$$

We think of Ω_{T} as an open cylinder with base Ω and height T. Its closure is a closed cylinder: $\overline{\Omega_{T}}=[0, T] \times \bar{\Omega}$.

Definition. The parabolic boundary of Ω_{T} is the set

$$
\Gamma=(\{0\} \times \bar{\Omega}) \cup([0, t] \times \partial \Omega) .
$$

Clearly, Γ is contained in the normal boundary $\partial \Omega_{T}$; the difference is

$$
\partial \Omega_{T} \backslash \Gamma=\{T\} \times \Omega .
$$

We call $\{T\} \times \Omega$ the final boundary of Ω_{T} (nonstandard nomenclature).
Observation. If a C^{2} function v has a maximum at some point in Ω_{T}, then $v_{t}=0$ and $\Delta v \leq 0$ at that point, so we get $v_{t}-\Delta v \geq 0$ there. Moreover, this holds at the final boundary as well, the only difference being that there, we can only conclude $v_{t} \geq 0$ and $\triangle v \leq 0$. In other words,

$$
v_{t}-\triangle v \geq 0 \quad \text { at any maximum in } \overline{\Omega_{T}} \backslash \Gamma .
$$

We must face a minor technical glitch: The above statement requires that v is C^{2} up to and including the final boundary of Ω_{T}. This complicates the proof of the following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume that $u \in C\left(\overline{\Omega_{T}}\right) \cap C^{2}\left(\Omega_{T}\right)$ satisfies

$$
u_{t}-\triangle u \leq 0
$$

Then $u(t, \boldsymbol{x}) \leq \max _{\Gamma} u$ for all $(t, \boldsymbol{x}) \in \overline{\Omega_{T}}$. In other words, u achieves its maximum on the parabolic boundary.

Proof. First, to deal with the "minor technical glitch" mentioned above, we shall strengthen the assumptions somewhat, and assume that $u \in C^{2}((0, T] \times \Omega)$. We will remove this extra assumption at the end.

Now let $\varepsilon>0$, and put $v(t, \boldsymbol{x})=u(t, \boldsymbol{x})-\varepsilon t$. Then $v_{t}-\triangle v \leq-\varepsilon<0$, and so it follows immediately from the Observation above that v cannot achieve its maximum anywhere outside Γ. On the other hand, since v is continuous and $\overline{\Omega_{T}}$ is compact, v does have a maximum in $\overline{\Omega_{T}}$, and so we must conclude that $v(t, \boldsymbol{x}) \leq$ $\max _{\Gamma} v$ for any $(t, \boldsymbol{x}) \in \overline{\Omega_{T}}$. But then $u(t, \boldsymbol{x})=v(t, \boldsymbol{x})+\varepsilon t \leq \max _{\Gamma} v+\varepsilon T \leq$ $\max _{\Gamma} u+\varepsilon T$. Since this holds for any $\varepsilon>0$, it finally follows that $u(t, \boldsymbol{x}) \leq \max _{\Gamma} u$, and the proof is complete, with the strengthened assumptions.
We now drop the requirement that $u \in C^{2}((0, T] \times \Omega)$. However, it is still true that $u \in C^{2}\left(\left(0, T^{\prime}\right] \times \Omega\right)$, for any $T^{\prime}<T$, so the first part shows that $u(t, \boldsymbol{x}) \leq \max _{\Gamma_{T^{\prime}}} u$ for all $(t, \boldsymbol{x}) \in \overline{\Omega_{T^{\prime}}}$. Here $\Gamma_{T^{\prime}}$ is the parabolic boundary of $\Omega_{T^{\prime}}$. But $\Gamma_{T^{\prime}} \subset \Gamma$, so we also have $u(t, \boldsymbol{x}) \leq \max _{\Gamma} u$. For any $t<T$, we can pick T^{\prime} with $t<T^{\prime}<T$, so the inequality holds. Finally, it also holds for $t=T$, since u is continuous on $\overline{\Omega_{T}}$. This, at last, completes the proof.

It should come as no surprise that there is also a minimum principle. It is proved by replacing u by $-u$ in Theorem 1 .

Corollary 2 (The weak minimum principle). Assume that $u \in C\left(\overline{\Omega_{T}}\right) \cap C^{2}\left(\Omega_{T}\right)$ satisfies

$$
u_{t}-\triangle u \geq 0
$$

Then $u(t, \boldsymbol{x}) \geq \min _{\Gamma} u$ for all $(t, \boldsymbol{x}) \in \overline{\Omega_{T}}$. In other words, u achieves its minimum on the parabolic boundary.

We will mostly be concerned with solutions of the heat equation $u_{t}-\triangle u=0$, and for these, both the maximum principle and the minimum principle can be used. But we may also wish to study inhomogeneous equations $u_{t}-\triangle u=f$, and if f has a definite sign, one or the other principle will apply.
Corollary 3 (Uniqueness for the heat equation). There exists at most one solution $u \in C\left(\overline{\Omega_{T}}\right) \cap C^{2}\left(\Omega_{T}\right)$ to the problem

$$
\begin{aligned}
& u_{t}-\triangle u=f \text { in } \Omega_{T} \\
& u=g \\
& \text { on } \Gamma .
\end{aligned}
$$

Here, f and g are given functions on Ω_{T} and Γ, respectively. (Thus g combines initial values and boundary values in one function.)
Proof. Let u be the difference between two solutions to this problem: Then u solves the same problem, but with $f=0$ and $g=0$. Thus u achieves both its minimum and maximum on Γ, but $u=0$ there, so $u=0$ everywhere.

The following corollary is proved in essentially the same way, by applying the minimum and maximum principles to $u_{1}-u_{2}$. Note that it immediately implies the preceding corollary by taking $g_{1}=g_{2}$.

Corollary 4 (Continuous dependence on data). Let u_{1} and u_{2} satisfy

$$
\left.\begin{array}{rlr}
u_{i t}-\triangle u_{i} & =f & \text { in } \Omega_{T}, \\
u_{i} & =g_{i} & \text { on } \Gamma,
\end{array}\right\} \quad \text { for } i=1,2 .
$$

Then $\left|u_{1}-u_{2}\right| \leq \max _{\Gamma}\left|g_{1}-g_{2}\right|$.
Exercise 1 (Continuous dependence on data, improved). Assume that u_{1} and u_{2} satisfy

$$
\begin{aligned}
u_{i t}-\triangle u_{i}=f_{i} & \text { in } \Omega_{T}, \\
u_{i} & =g_{i}
\end{aligned} \quad \text { on } \Gamma, \quad \text { for } i=1,2 .
$$

Let $\varphi=\sup _{\Omega_{T}}\left|f_{1}-f_{2}\right|$ and $\gamma=\max _{\Gamma}\left|g_{1}-g_{2}\right|$, and show that $\left|u_{1}-u_{2}\right| \leq \gamma+\varphi T$.
Note that for any t, we can pick $T=t$, so we really get $\left|u_{1}-u_{2}\right| \leq \gamma+\varphi t$.
Hint: Apply the maximum principle to $u_{1}-u_{2}-\varphi t$ and $u_{2}-u_{1}-\varphi t$.
Exercise 2. Some definitions:
The Hessian of u is the (symmetric!) $n \times n$ matrix $\mathrm{H} u$ with entries $u_{x_{i} x_{j}}$.
The Frobenius inner product of two real matrices A and B is

$$
\langle A, B\rangle_{\mathrm{F}}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{i j}=\operatorname{tr}\left(A^{T} B\right) .
$$

Show that the maximum (and minimum) principle continues to hold if $u_{t}-\triangle u$ is replaced by the more general

$$
u_{t}-\langle A, \mathrm{H} u\rangle_{\mathrm{F}}
$$

where the real matrix A is symmetric and positive definite.
Here are some ingredients of the proof:

- At an interior maximum point, $-\mathrm{H} u$ is positive semidefinite, i.e., $\boldsymbol{y}^{T} \mathrm{H} \boldsymbol{y} \leq 0$ for all $\boldsymbol{y} \in \mathbb{R}^{n}$. (Short proof: Take the second derivative of $u(\boldsymbol{x}+s \boldsymbol{y})$ with respect to s where x is a maximum point, and put $s=0$.)
- It is known that if A and B are positive semidefinite, then $\langle A, B\rangle_{\mathrm{F}} \geq 0$. (Short proof: Since A is symmetric, we can write $\langle A, B\rangle_{\mathrm{F}}=\operatorname{tr}(A B)$. A will have a positive semidefinite square root $A^{1 / 2}$. A standard result on the trace gives $\operatorname{tr}(A B)=\operatorname{tr}\left(A^{1 / 2} A^{1 / 2} B\right)=\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)$, but $A^{1 / 2} B A^{1 / 2}$ is positive semidefinite, and such matrices have nonnegative trace.)

Exercise 3. Show that the maximum (and minimum) principle continues to hold if $u_{t}-\triangle u$ is replaced by the even more general

$$
u_{t}-\langle A, \mathrm{H} u\rangle_{\mathrm{F}}+b(\nabla u)
$$

where the real matrix A is symmetric and positive definite, provided b satisfies $b(\mathbf{0})=0$. (For a simple and common example, let $b(\nabla u)=\boldsymbol{b} \cdot \nabla u$.)

