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In this note, we consider the standard heat equation
u—A\u=0 in Qp
in which Q7 = (0, T) X Q where Q C R" is a bounded region, T > 0, and
u € C(Qr) N C¥Qr).

We think of Qr as an open cylinder with base Q and height T. Its closure is a
closed cylinder: Qr = [0, T] x Q.

Definition. The parabolic boundary of Qr is the set
I'=({0}xQ)u([0,t] x Q).
Clearly, I is contained in the normal boundary dQr; the difference is
0Qr\T ={T}x Q.
We call {T'} x Q the final boundary of Q (nonstandard nomenclature).

Observation. If a C2 function v has a maximum at some pointin Qr, thenv, = 0
and /\ v < 0 at that point, so we get v; — /\ v > 0 there. Moreover, this holds
at the final boundary as well, the only difference being that there, we can only
conclude v; > 0 and /\ v < 0. In other words,

v, —/\v >0 atany maximum in Qg \ T.

We must face a minor technical glitch: The above statement requires that v is C?
up to and including the final boundary of Q. This complicates the proof of the
following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume thatu € C(Qr) N C%(Qr)
satisfies

u,— A\ u<o0.

Then u(t,x) < maxp u for all (t,x) € Qr. In other words, u achieves its maximum
on the parabolic boundary.



Proof. First, to deal with the “minor technical glitch” mentioned above, we shall
strengthen the assumptions somewhat, and assume that u € C2((0,T] x Q). We
will remove this extra assumption at the end.

Now let ¢ > 0, and put v(t,x) = u(t,x) — et. Then v; — A v < — < 0, and
so it follows immediately from the Observation above that v cannot achieve its
maximum anywhere outside I'. On the other hand, since v is continuous and Qr
is compact, v does have a maximum in Q_T, and so we must conclude that v(t, x) <
maxr v for any (¢t,x) € Q7. But then u(t,x) = v(t,x) + et < maxpv + €T <
maxr u+¢€T. Since this holds for any € > 0, it finally follows that u(t, x) < maxr u,
and the proof is complete, with the strengthened assumptions.

We now drop the requirement thatu € C?((0, T]x Q). However, it is still true that
u € C*((0,T']xQ), forany T’ < T, so the first part shows that u(t, x) < maxr,, u

for all (¢, x) € Qp. Here I is tbe parabolic boundary of Q.. But Iy, C T, so we
also have u(t,x) < maxpu. For any t < T, we can pick T' with t < T' < T, so
the inequality holds. Finally, it also holds for t = T, since u is continuous on Q7.
This, at last, completes the proof. ]

It should come as no surprise that there is also a minimum principle. It is
proved by replacing u by —u in Theorem 1.

Corollary 2 (The weak minimum principle). Assume thatu € C(Qr) n C?(Qr)
satisfies
u— A\ u>0.

Then u(t,x) > ming u for all (t,x) € Q. In other words, u achieves its minimum
on the parabolic boundary.

‘We will mostly be concerned with solutions of the heat equation u, — Au=0,
and for these, both the maximum principle and the minimum principle can be
used. But we may also wish to study inhomogeneous equations u; — Au = f,
and if f has a definite sign, one or the other principle will apply.

Corollary 3 (Uniqueness for the heat equation). There exists at most one solution
u € C(Qr) N C*(Qr) to the problem
w—-ANu=f inQr,
u=g onl.

Here, f and g are given functions on Qr and T, respectively. (Thus g combines initial
values and boundary values in one function.)

Proof. Let u be the difference between two solutions to this problem: Then u
solves the same problem, but with f = 0 and g = 0. Thus u achieves both its
minimum and maximum on I, but u = 0 there, so u = 0 everywhere. 1



The following corollary is proved in essentially the same way, by applying the
minimum and maximum principles to u; — u,. Note that it immediately implies
the preceding corollary by taking g, = g,.

Corollary 4 (Continuous dependence on data). Let u; and u, satisfy

uy—Auw=f inQp,
u=g; onl,

} fori=1,2.

Then |u; — u,| < maxr|g; — &»|-

Exercise (Continuous dependence on data, improved). Assume that u; and u,
satisfy
w—/A\u=fi inQr,

} fori=1,2.
Ui =gi OHF,

Let¢p = supQT|f1 — f| and y = maxr|g; — &»|, and show that |u; —u,| <y + ¢T.
Note that for any ¢, we can pick T = ¢, so we really get |u; — u,| <y + ¢t.
Hint: Apply the maximum principle to u; — u, — ¢t and u, — u; — ¢t.



