Weak maximum principle for the heat equation

Harald Hanche-Olsen

In this note, we consider the standard heat equation

$$u_t - \bigtriangleup u = 0$$
 in Ω_T

in which $\Omega_T = (0, T) \times \Omega$ where $\Omega \subset \mathbb{R}^n$ is a *bounded* region, T > 0, and

$$u \in C(\overline{\Omega_T}) \cap C^2(\Omega_T).$$

We think of Ω_T as an open *cylinder* with base Ω and height *T*. Its closure is a closed cylinder: $\overline{\Omega_T} = [0, T] \times \overline{\Omega}$.

Definition. The *parabolic boundary* of Ω_T is the set

$$\Gamma = (\{0\} \times \overline{\Omega}) \cup ([0, t] \times \partial \Omega).$$

Clearly, Γ is contained in the normal boundary $\partial \Omega_T$; the difference is

$$\partial \Omega_T \setminus \Gamma = \{T\} \times \Omega.$$

We call $\{T\} \times \Omega$ the *final boundary* of Ω_T (nonstandard nomenclature).

Observation. If a C^2 function v has a maximum at some point in Ω_T , then $v_t = 0$ and $\Delta v \leq 0$ at that point, so we get $v_t - \Delta v \geq 0$ there. Moreover, this holds at the final boundary as well, the only difference being that there, we can only conclude $v_t \geq 0$ and $\Delta v \leq 0$. In other words,

 $v_t - \triangle v \ge 0$ at any maximum in $\overline{\Omega_T} \setminus \Gamma$.

We must face a minor technical glitch: The above statement requires that v is C^2 up to and including the final boundary of Ω_T . This complicates the proof of the following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume that $u \in C(\overline{\Omega_T}) \cap C^2(\Omega_T)$ satisfies

$$u_t - \triangle u \le 0.$$

Then $u(t, \mathbf{x}) \leq \max_{\Gamma} u$ for all $(t, \mathbf{x}) \in \overline{\Omega_T}$. In other words, u achieves its maximum on the parabolic boundary.

Weak maximum principle for the heat equation

Proof. First, to deal with the "minor technical glitch" mentioned above, we shall strengthen the assumptions somewhat, and assume that $u \in C^2((0,T] \times \Omega)$. We will remove this extra assumption at the end.

Now let $\epsilon > 0$, and put $v(t, \mathbf{x}) = u(t, \mathbf{x}) - \epsilon t$. Then $v_t - \Delta v \le -\epsilon < 0$, and so it follows *immediately* from the Observation above that v cannot achieve its maximum anywhere outside Γ . On the other hand, since v is continuous and $\overline{\Omega_T}$ is compact, v does have a maximum in $\overline{\Omega_T}$, and so we must conclude that $v(t, \mathbf{x}) \le$ $\max_{\Gamma} v$ for any $(t, \mathbf{x}) \in \overline{\Omega_T}$. But then $u(t, \mathbf{x}) = v(t, \mathbf{x}) + \epsilon t \le \max_{\Gamma} v + \epsilon T \le$ $\max_{\Gamma} u + \epsilon T$. Since this holds for any $\epsilon > 0$, it finally follows that $u(t, \mathbf{x}) \le \max_{\Gamma} u$, and the proof is complete, with the strengthened assumptions.

We now drop the requirement that $u \in C^2((0, T] \times \Omega)$. However, it is *still* true that $u \in C^2((0, T'] \times \Omega)$, for any T' < T, so the first part shows that $u(t, \mathbf{x}) \leq \max_{\Gamma_{T'}} u$ for all $(t, \mathbf{x}) \in \overline{\Omega_{T'}}$. Here $\Gamma_{T'}$ is the parabolic boundary of $\Omega_{T'}$. But $\Gamma_{T'} \subset \Gamma$, so we also have $u(t, \mathbf{x}) \leq \max_{\Gamma} u$. For any t < T, we can pick T' with t < T' < T, so the inequality holds. Finally, it also holds for t = T, since u is continuous on $\overline{\Omega_T}$. This, at last, completes the proof.

It should come as no surprise that there is also a *minimum* principle. It is proved by replacing u by -u in Theorem 1.

Corollary 2 (The weak minimum principle). Assume that $u \in C(\overline{\Omega_T}) \cap C^2(\Omega_T)$ satisfies

$$u_t - \triangle u \ge 0.$$

Then $u(t, \mathbf{x}) \ge \min_{\Gamma} u$ for all $(t, \mathbf{x}) \in \overline{\Omega_T}$. In other words, u achieves its minimum on the parabolic boundary.

We will mostly be concerned with solutions of the heat equation $u_t - \Delta u = 0$, and for these, both the maximum principle and the minimum principle can be used. But we may also wish to study inhomogeneous equations $u_t - \Delta u = f$, and if *f* has a definite sign, one or the other principle will apply.

Corollary 3 (Uniqueness for the heat equation). *There exists at most one solution* $u \in C(\overline{\Omega_T}) \cap C^2(\Omega_T)$ to the problem

$$u_t - \bigtriangleup u = f \quad in \ \Omega_T,$$
$$u = g \quad on \ \Gamma.$$

Here, f and g are given functions on Ω_T and Γ , respectively. (Thus g combines initial values and boundary values in one function.)

Proof. Let *u* be the difference between two solutions to this problem: Then *u* solves the same problem, but with f = 0 and g = 0. Thus *u* achieves both its minimum and maximum on Γ , but u = 0 there, so u = 0 everywhere.

The following corollary is proved in essentially the same way, by applying the minimum and maximum principles to $u_1 - u_2$. Note that it immediately implies the preceding corollary by taking $g_1 = g_2$.

Corollary 4 (Continuous dependence on data). Let u_1 and u_2 satisfy

$$\begin{array}{c} u_{it} - \bigtriangleup u_i = f \quad in \ \Omega_T, \\ u_i = g_i \quad on \ \Gamma, \end{array} \right\} \quad for \ i = 1, 2.$$

Then $|u_1 - u_2| \le \max_{\Gamma} |g_1 - g_2|$.

Exercise (Continuous dependence on data, improved). Assume that u_1 and u_2 satisfy

$$\begin{array}{c} u_{it} - \bigtriangleup u_i = f_i & \text{in } \Omega_T, \\ u_i = g_i & \text{on } \Gamma, \end{array} \right\} \quad \text{for } i = 1, 2.$$

Let $\phi = \sup_{\Omega_T} |f_1 - f_2|$ and $\gamma = \max_{\Gamma} |g_1 - g_2|$, and show that $|u_1 - u_2| \le \gamma + \phi T$. Note that for any *t*, we can pick T = t, so we really get $|u_1 - u_2| \le \gamma + \phi t$. *Hint*: Apply the maximum principle to $u_1 - u_2 - \phi t$ and $u_2 - u_1 - \phi t$.