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In this note, we consider the standard heat equation
u,—Au=0 inQp
in which Q7 = (0,T) x Q where Q C R" is a bounded region, T > 0, and
u € C(Qr) nC¥(Qr).

We think of Qt as an open cylinder with base Q and height T. Its closure is a
closed cylinder: Qr = [0,T] X Q.

Definition. The parabolic boundary of Q7 is the set
I'=({0}xQ)u([0,t] x3Q).
Clearly, T' is contained in the normal boundary dQ7; the difference is
30r \T ={T}xQ.
We call { T} x Q the final boundary of Qr (nonstandard nomenclature).

Observation. If a C? function v has a maximum at some point in Qr, thenv, = 0
and /A v < 0 at that point, so we get v, — /A v > 0 there. Moreover, this holds
at the final boundary as well, the only difference being that there, we can only
conclude v; > 0 and A\ v < 0. In other words,

v, —/\v>0 atanymaximumin Qz \T.

We must face a minor technical glitch: The above statement requires that v is C2
up to and including the final boundary of Q7. This complicates the proof of the
following theorem, but only a little.

Theorem 1 (The weak maximum principle). Assume thatu € C(Qr) N C3(Qy)
satisfies

u— Au<o.

Then u(t,x) < maxr u forall (t,x) € Q_T In other words, u achieves its maximum
on the parabolic boundary.

Proof. First, to deal with the “minor technical glitch” mentioned above, we shall
strengthen the assumptions somewhat, and assume that u € C2((0,T] X Q). We
will remove this extra assumption at the end.

Now let ¢ > 0, and put v(t,x) = u(t,x) — et. Then v, — A\ v < —¢ < 0, and
so it follows immediately from the Observation above that v cannot achieve its
maximum anywhere outside I. On the other hand, since v is continuous and Qr
is compact, v does have a maximum in Q_T and so we must conclude that v(t, x) <
maxp v for any (t,x) € Qr. But then u(t,x) = v(t,x) + et < maxpv + eI <
maxy u+eT. Since this holds for any ¢ > 0, it finally follows that u(t, x) < maxr u,
and the proof is complete, with the strengthened assumptions.

We now drop the requirement that u € C>((0, T]x Q). However, it is still true that
u € C*((0,T'1xQ), forany T’ < T, so the first part shows that u(t, x) < maxr, , u
for all (t,x) € Qpr. Here I is tbe parabolic boundary of Q.. But Iy C T, so we
also have u(t,x) < maxpu. For any t < T, we can pick T’ with t < T’ < T, so
the inequality holds. Finally, it also holds for t = T, since u is continuous on Q.
This, at last, completes the proof. 1

It should come as no surprise that there is also a minimum principle. It is
proved by replacing u by —u in Theorem 1.

Corollary 2 (The weak minimum principle). Assume thatu € C(Q_T) nCc3(Qr)
satisfies
u— AN\ u>0.

Then u(t,x) > minp u for all (t,x) € Qr. In other words, u achieves its minimum
on the parabolic boundary.

We will mostly be concerned with solutions of the heat equation u,— A u = 0,
and for these, both the maximum principle and the minimum principle can be
used. But we may also wish to study inhomogeneous equations u; — A u = f,
and if f has a definite sign, one or the other principle will apply.

Corollary 3 (Uniqueness for the heat equation). There exists at most one solution
u € C(Qr) N C?(Qr) to the problem
w—-ANu=f inQp,
u=g onl.

Here, f and g are given functions on Qr and T, respectively. (Thus g combines initial
values and boundary values in one function.)

Proof. Let u be the difference between two solutions to this problem: Then u
solves the same problem, but with f = 0 and g = 0. Thus u achieves both its
minimum and maximum on I, but u = 0 there, so u = 0 everywhere. 1



The following corollary is proved in essentially the same way, by applying the
minimum and maximum principles to u; — u,. Note that it immediately implies
the preceding corollary by taking g, = g,.

Corollary 4 (Continuous dependence on data). Let u; and u, satisfy

uy—N\uw=f inQr,
u;=g; onl,

} fori=1,2.

Then |u; — u,| < maxr|g; — g

Exercise 1 (Continuous dependence on data, improved). Assume that u; and u,
satisfy
u— Au=f inQp,

} fori=1,2.
u;=g; onrl,

Letp = supQT|fl — f] and y = maxr|g; — g»|, and show that |u; —u,| <y + ¢T.
Note that for any ¢, we can pick T = ¢, so we really get |u; — u,| <y + ¢t.
Hint: Apply the maximum principle to u; — u, — ¢t and u, — u; — ¢t.

Exercise 2. Some definitions:
The Hessian of u is the (symmetric!) n X n matrix Hu with entries Unx;-
The Frobenius inner product of two real matrices A and B is

<A’B>F = Z Z aijbij = tI'(ATB).

i=1j=1

Show that the maximum (and minimum) principle continues to hold if u, — A u
is replaced by the more general

U — <A7 Hu>F

where the real matrix A is symmetric and positive definite.
Here are some ingredients of the proof:

« Ataninterior maximum point, —Hu is positive semidefinite, i.e., yT Hy < 0
for all y € R™. (Short proof: Take the second derivative of u(x + sy) with
respect to s where x is a maximum point, and put s = 0.)

« It is known that if A and B are positive semidefinite, then (A, B)y > 0.
(Short proof: Since A is symmetric, we can write (A, B)g = tr(AB). A will
have a positive semidefinite square root A/2. A standard result on the trace
gives tr(AB) = tr(AY2AY2B) = tr(AY2BAY?), but AY2BAY? is positive
semidefinite, and such matrices have nonnegative trace.)

Exercise 3. Show that the maximum (and minimum) principle continues to hold
if u, — /\ u is replaced by the even more general

u; — (A, Hu)g + b(Vu),

where the real matrix A is symmetric and positive definite, provided b satisfies
b(0) = 0. (For a simple and common example, let b(Vu) = b - Vu.)



