Harmonicfunctionology

Harald Hanche-Olsen

The Laplace operator on \mathbb{R}^n

$$\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

plays a rôle in the wave and heat equations, but even more fundamentally, in the *Laplace equation*

$$\Delta u = 0 \tag{1}$$

and the *Poisson equation* $-\Delta u = f$ where *f* is a given function.

A C^2 solution of (1) is called *harmonic*. (Later, we will find that harmonic functions are in fact infinitely differentiable.)

Much is gained from the trivial observation that $\Delta u = \nabla \cdot \nabla u$ together with various applications of the divergence theorem or two of its corollaries, Green's first and second identities.

Let's get started by simply integrating Δu over a bounded domain ω with piecewise C^1 boundary:

$$\int_{\omega} \Delta u(\boldsymbol{x}) \, \mathrm{d}^{n} \boldsymbol{x} = \int_{\omega} \nabla \cdot \nabla u(\boldsymbol{x}) \, \mathrm{d}^{n} \boldsymbol{x} = \int_{\partial \omega} \partial_{\nu} u(\boldsymbol{x}) \, \mathrm{d}S(\boldsymbol{x}). \tag{2}$$

This immediately proves

Proposition 1. If a C^2 function u on a domain Ω is harmonic, then

$$\int_{\partial \omega} \partial_{\nu} u \, \mathrm{d}S = 0 \tag{3}$$

for all bounded domains ω with $\overline{\omega} \subset \Omega$ having piecewise C^1 boundary.

Conversely, if (3) holds for every ball $\omega = B(\mathbf{x}, r)$ whose closure lies within Ω , then u is harmonic.

Proof. We have already proved the first part. For the converse, (3) and (2) imply that the *average* of Δu over any ball is zero. By letting the radius of the ball $B(\mathbf{x}, r)$ tend to zero, we conclude that $\Delta u(\mathbf{x}) = 0$.

Definition. The (*radius r*) *spherical average* of a function u at a point x is defined to be

$$\tilde{u}_{\mathbf{x}}(r) = \int_{\partial B(\mathbf{x},r)} u \, \mathrm{d}S = \int_{\mathbb{S}^{n-1}} u(\mathbf{x} + r\mathbf{y}) \, \mathrm{d}S(\mathbf{y}),$$

where $\mathbb{S}^{n-1} \subset \mathbb{R}^n$ is the unit sphere and the "barred" integral signs denote the average:

$$\int_{\partial B(\mathbf{x},r)} u \, \mathrm{d}S = \frac{1}{A_n r^{n-1}} \int_{\partial B(\mathbf{x},r)} u \, \mathrm{d}S,$$

where A_n is the area of \mathbb{S}^{n-1} . Note that the second integral in the definition of $\tilde{u}_x(r)$ makes sense even for r < 0; thus, we adopt this as the definition for all real r for which the integrand is defined on \mathbb{S}^{n-1} . We see that \tilde{u}_x is an *even* function; it is C^k if u is C^k , and $\tilde{u}_x(0) = u(x)$.

When ω is a ball, we can rewrite (2) in terms of spherical averages: Noting that the volume of the ball $B(\mathbf{x}, r)$ is $A_n r^n / n$, we find

$$\int_{B(\boldsymbol{x},r)} \Delta u(\boldsymbol{y}) \, \mathrm{d}^{n} \boldsymbol{y} = \frac{n}{r} \int_{B(\boldsymbol{x},r)} \partial_{\nu} u(\boldsymbol{y}) \, \mathrm{d}S(\boldsymbol{y}) = \frac{n}{r} \int_{\mathbb{S}^{n-1}} \partial_{r} u(\boldsymbol{x}+r\boldsymbol{y}) \, \mathrm{d}S(\boldsymbol{y}),$$

where we can move the r derivative outside the integral, and arrive at

$$\int_{B(\mathbf{x},r)} \Delta u(\mathbf{y}) \,\mathrm{d}^n \mathbf{y} = \frac{n}{r} \tilde{u}'_{\mathbf{x}}(r). \tag{4}$$

Along with $\tilde{u}_{\mathbf{x}}(0) = u(\mathbf{x})$, this implies

Theorem 2 (The mean value property of harmonic functions). A C^2 function u on a domain Ω is harmonic if and only if $\tilde{u}_x(r) = u(x)$ for all $x \in \Omega$ and all r for which $\overline{B}(x, |r|) \subset \Omega$.

In general, we say a function *u* satisfies the *mean value property* if $\tilde{u}_x(r) = u(x)$ whenever $\overline{B}(x, |r|) \subset \Omega$. We hall see below (Theorem 4) that the mean value property characterizes harmonic functions. But first, we collect an easy consequence of (4).

Proposition 3. For any C^2 function u, we have

$$\Delta u(\mathbf{x}) = n \tilde{u}_{\mathbf{x}}''(0).$$

Proof. The function \tilde{u}_x is even, so $\tilde{u}'_x(0) = 0$. Therefore, letting $r \to 0$ in (4), we arrive at the stated result.

Theorem 4 (The mean value property and regularity). Assume that a continuous function u satisfies the mean value property on a domain Ω . Then u is infinitely differentiable, and is therefore harmonic. In particular, every harmonic function is infinitely differentiable.

Proof. This proof may seem long, but only because we use it to develop some tools that have wider applicability.

First, define a *standard mollifier* $\rho : \mathbb{R}^n \to \mathbb{R}$. Here is one of many possible definitions:

$$\rho(\mathbf{x}) = \begin{cases} ae^{1/(|\mathbf{x}|^2 - 1)}, & |\mathbf{x}| < 1\\ 0, & |\mathbf{x}| \ge 1, \end{cases}$$

where a > 0 is chosen to ensure that

$$\int_{\mathbb{R}^n} \rho \, \mathrm{d} \boldsymbol{x} = 1.$$

That is one of the defining qualities of a standard mollifier. The others are: That $\rho \ge 0$ everywhere, that it vanishes outside the unit ball, that it is infinitely differentiable, and is radially symmetric – that is, a function of $|\mathbf{x}|$ alone.

For any $\delta > 0$ we can squeeze the mollifier to fit inside a ball of radius δ :

$$\rho_{\delta}(\boldsymbol{x}) = \frac{1}{\delta^n} \rho\left(\frac{\boldsymbol{x}}{\delta}\right),$$

so that ρ_{δ} also has integral 1, but vanishes outside the ball $B(0, \delta)$.

Now we consider the convolution product

$$u * \rho_{\delta}(\mathbf{x}) = \int_{\mathbb{R}^n} u(\mathbf{y}) \rho_{\delta}(\mathbf{x} - \mathbf{y}) d^n \mathbf{y}.$$

This is defined for all $x \in \Omega$ with a distance less than δ to the complement of Ω . Thus, for any $x \in \Omega$, we can make δ small enough so that $u * \rho_{\delta}$ is defined at x.

Moreover, $u * \rho_{\delta}$ is infinitely differentiable: This is proved by differentiating with respect to the components of *x* under the integral sign, as much as you like.

Finally, the mean value property of u and the radial symmetry of ρ_{δ} combine to ensure that $u(\mathbf{x}) = u * \rho(\mathbf{x})$ for all \mathbf{x} where $u * \rho$ is defined, which is what we were going to prove.

For a detailed argument, write

$$u * \rho(\mathbf{x}) = \int_{\mathbb{R}^n} u(\mathbf{x} - \mathbf{y}) \rho_{\delta}(\mathbf{y}) d^n \mathbf{y}$$

and write the integral in polar form:

$$u * \rho(\mathbf{x}) = \int_0^\delta \int_{\partial B(\mathbf{x},r)} u(\mathbf{x} - \mathbf{y}) \rho_\delta(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \, \mathrm{d}r$$
$$= \int_0^\delta \int_{\mathbb{S}^{n-1}} u(\mathbf{x} - r\mathbf{y}) \rho_\delta(r\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \, r^{n-1} \, \mathrm{d}r$$

Now use the radial symmetry: $\rho_{\delta}(ry)$ is constant for $y \in \mathbb{S}^{n-1}$, so this factor can be moved outside the inner integral. Next, use the mean value property of *u*:

$$\int_{\mathbb{S}^{n-1}} u(\boldsymbol{x} - r\boldsymbol{y}) \rho_{\delta}(r\boldsymbol{y}) \, \mathrm{d}^n \boldsymbol{y} = A_n u(\boldsymbol{x}).$$

But u(x) is a constant, which we move outside the outer integral. We are left with

$$u * \rho(\mathbf{x}) = u(\mathbf{x}) \int_0^\delta r^{n-1} A_n \rho_\delta(r\mathbf{y}) \,\mathrm{d}r$$

where y is any unit vector. But running the whole calculation in reverse, this time without the *u* term, reveals that the integral here is merely the integral of ρ_{δ} , which has the value 1. Thus we are left with $u * \rho(x) = u(x)$, as claimed.

The maximum principle

Definition. A C^2 function u is called *subharmonic* if $\Delta u \ge 0$, and *superharmonic* if $\Delta u \le 0$. Thus it is harmonic if and only if it is both subharmonic and superharmonic. (The reason for the naming will become clear later; see Corollary 7.) Clearly, u is superharmonic if and only if -u is subharmonic.

Theorem 5 (Strong maximum principle). Assume that $u \in C^2(\Omega)$ is subharmonic in a region $\Omega \subseteq \mathbb{R}^n$. If u has a global maximum in Ω , then u is constant.

Proof. Let *M* be the global maximum of *u*, and put

$$S = \{ \boldsymbol{x} \in \Omega \mid u(\boldsymbol{x}) = M \}.$$

Then *S* is a closed subset of Ω , by the continuity of *u*. It is also nonempty by assumption.

Consider any $\mathbf{x} \in S$. From (4) and the subharmonicity of u, we get $\tilde{u}'_{\mathbf{x}}(r) \ge 0$ for r > 0. Thus we get $\tilde{u}_{\mathbf{x}}(r) \ge \tilde{u}_{\mathbf{x}}(0) = u(\mathbf{x}) = M$ for r > 0 (so long as $\overline{B}(\mathbf{x}, r) \subset \Omega$). But $u \le M$ everywhere, and if u < M anywhere on the sphere $\partial B(\mathbf{x}, r)$, we would get $\tilde{u}_{\mathbf{x}}(r) < 0$. Thus u is contant equal to M on $\partial B(\mathbf{x}, r)$ for any small enough r, and therefore, u is constant in some neighbourhood of \mathbf{x} . This means that S is open.

Since *S* is an open, closed, and nonempty subset of the connected set Ω , we must have $S = \Omega$, and the proof is complete.

Remark. Obviously, we obtain a strong *minimum* principle for *superharmonic* functions by multiplying by -1. In particular, a non-constant harmonic function cannot attain a minimum or maximum value anywhere in Ω .

Corollary 6 (Weak maximum principle). Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and assume that $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ is subharmonic. Then

$$\max\{u(\boldsymbol{x}) \mid \boldsymbol{x} \in \overline{\Omega}\} = \max\{u(\boldsymbol{x}) \mid \boldsymbol{x} \in \partial\Omega\}.$$

In particular, a harmonic function which is continuous on $\overline{\Omega}$ attains its minimum and maximum values on the boundary $\partial \Omega$.

Proof. The weak principle is an obvious consequence of the strong principle. However, it is worth noting that a much more elementary proof exists. Namely, for any $\varepsilon > 0$, let $v(\mathbf{x}) = u(\mathbf{x}) + \varepsilon |\mathbf{x}|^2$, and note that then $\Delta v > 0$. But $\Delta v(\mathbf{x}) \le 0$ if \mathbf{x} is an interior minimum point for v, so v cannot have any maximum in the interior. Thus for any $\mathbf{x} \in \Omega$,

$$u(\mathbf{x}) = v(\mathbf{x}) - \varepsilon |\mathbf{x}|^2 \le \max_{\partial \Omega} v \le \max_{\partial \Omega} u + \varepsilon \max_{\mathbf{x} \in \partial \Omega} |\mathbf{x}|^2.$$

Now let $\varepsilon \to 0$ to arrive at the conclusion $u(\mathbf{x}) \leq \max_{\partial \Omega} u$.

Our next result explains the terms *sub-* and *super*harmonic: A subharmonic function is below, and a superharmonic above, a harmonic function given the same boundary data.

Corollary 7. Assume that Ω is a bounded domain, that $u, v \in C(\overline{\Omega}) \cap C^2(\Omega)$, that u is harmonic in Ω , and that v = u on $\partial \Omega$. If v is subharmonic, then $v \leq u$ in Ω , while if v is superharmonic, then $v \geq u$ in Ω .

Proof. Apply the weak maximum principle to v - u if v is subharmonic, or to u - v if v is superharmonic.

Remark. Corollary 7 suggests a strategy for proving existence of a solution to the Dirichlet problem for the Laplace equation: Assume we are trying to find a harmonic function on Ω with the given boundary value g. Consider the pointwise *supremum* of all subharmonic functions which are $\leq g$ on $\partial \Omega$, and the pointwise *infimum* of all superharmonic functions which are $\geq g$ on $\partial \Omega$. If the two functions coincide, they should provide a solution to the problem. This is the basis for *Perron's method*, which we will hopefully get a look at later.

The Poisson equation

We now turn our study to the *Poisson equation*:

$$-\Delta u = f \tag{5}$$

where *f* is a known continuous function. (It *must* be continuous to allow for classical, i.e., C^2 , solutions *u*.)

Referring all the way back to (2), we quickly get the following generalization of Proposition 1:

Proposition 8. A C^2 function u on a domain Ω solves the Poisson equation (5) if and only if

$$-\int_{\partial\omega}\partial_{\nu}u(\boldsymbol{x})\,\mathrm{d}S(\boldsymbol{x}) = \int_{\omega}f(\boldsymbol{x})\,\mathrm{d}^{n}\boldsymbol{x}$$
(6)

for all bounded domains ω with $\overline{\omega} \subset \Omega$ having piecewise C^1 boundary. It is sufficient to consider balls $\omega = B(\mathbf{x}, r)$.

As an example, we consider a Poisson equation with a radially symmetric right hand side $f(\mathbf{x}) = \mathring{f}(|\mathbf{x}|)$. We expect to find a radially symmetric solution $u(\mathbf{x}) = \mathring{u}(|\mathbf{x}|)$. Now (6) with $\omega = B(\mathbf{0}, \mathbf{r})$ becomes

$$-A_n r^{n-1} \mathring{u}'(r) = A_n \int_0^r \mathring{f}(s) s^{n-1} \,\mathrm{d}s.$$

Taking the derivative and rearraing turns this into the ODE

$$-\frac{1}{r^{n-1}}\frac{\mathrm{d}}{\mathrm{d}r}\big(r^{n-1}\mathring{u}'(r)\big)=\mathring{f}(r).$$

A direct calculation reveals that indeed,

$$\Delta \mathring{u}(|\mathbf{x}|) = \mathring{u}''(|\mathbf{x}|) + \frac{n-1}{|\mathbf{x}|} \mathring{u}'(|\mathbf{x}|) = \frac{1}{r^{n-1}} \frac{\mathrm{d}}{\mathrm{d}r} (r^{n-1} \mathring{u}'(r)) \bigg|_{r=\mathbf{x}}$$

so a solution to the above ODE will in fact solve the Poisson equation in the radially symmetric case.

Consider now the case where $\mathring{f}(r) = 0$ when r > R. Then for r > R,

$$r^{n-1} \mathring{u}'(r) = \int_0^R \mathring{f}(s) s^{n-1} \, \mathrm{d}s = \frac{1}{A_n} \int_{B(\mathbf{0},R)} f(\mathbf{x}) \, \mathrm{d}^n \mathbf{x} = : \frac{m}{A_n}.$$

Harmonicfunctionology

Accordingly, after integrating, we define the function $\Phi : \mathbb{R}^n \to \mathbb{R}$ by

$$\Phi(\mathbf{x}) = \frac{-\ln(|\mathbf{x}|)}{2\pi} \quad \text{for } n = 2,$$

$$\Phi(\mathbf{x}) = \frac{1}{(n-2)A_n |\mathbf{x}|^{n-2}} \quad \text{for } n \ge 3.$$

Then Φ is harmonic for $x \neq 0$, and we find that our radially symmetric solution satisfies

$$u(\mathbf{x}) = m\Phi(\mathbf{x})$$
 for $|\mathbf{x}| > R$ where $m = \int_{B(\mathbf{0},R)} f(\mathbf{x}) d^n \mathbf{x}$

– plus an integration constant, which we have thrown away. For $n \ge 3$, this gives the unique radially symmetric solution which vanishes at infinity; for n = 2, however, no particular value of the dropped constant of integration distinguishes itself.

Now, assume that m = 1, and replace $f(\mathbf{x})$ by $e^{-n}f(\mathbf{x}/\varepsilon)$, and letting $\varepsilon \to 0$. The resulting solution u will converge pointwise to Φ (except at $\mathbf{x} = \mathbf{0}$), while f becomes a Dirac δ in the limit. Thus we are tempted to conclude that

$$-\Delta \Phi = \delta$$

This is indeed true, but we first need to get into the theory of distributions in order to understand the rigorous meaning of the above equation.

We call Φ the *fundamental solution* for the Poisson equation. Even lacking the abstract theory, we can use it to solve the general Poisson equation.

Proposed solution to the Poisson equation:

$$u(\mathbf{x}) = \Phi * f(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{y}) f(\mathbf{x} - \mathbf{y}) \,\mathrm{d}^n \mathbf{y}$$
(7)

We expect this to solve the equation because formally, we get

$$\Delta u = \Delta (\Phi * f) = (\Delta \Phi) * f = \delta * f = f.$$

However, this calculation is hard to justify. We can get there via a detour, if f is sufficiently regular:

Theorem 9. Assume that $f \in C_c^2(\mathbb{R}^n)$. Then the function u given by (7) is a solution to the Poisson equation (5).

Proof. To simplify, thanks to translation invariance, we only need to prove that $-\Delta(\Phi * f)(\mathbf{0}) = f(\mathbf{0})$. (For any $\mathbf{x}_0 \in \mathbb{R}^n$, put $\tilde{f}(\mathbf{x}) = f(\mathbf{x}_0 + \mathbf{x})$. Then $\Phi * \tilde{f}(\mathbf{x}) =$ $\Phi * f(\mathbf{x}_{\perp} + \mathbf{x})$, so $-\Delta(\Phi * \tilde{f})(\mathbf{0}) = \tilde{f}(\mathbf{0})$ implies $-\Delta(\Phi * f)(\mathbf{x}) = f(\mathbf{x})$. First, we note that

$$\int_{\partial B(\mathbf{0},r)} \Phi \, \mathrm{d}^{x} \boldsymbol{x} = \begin{cases} -r \ln r & \text{for } n = 2, \\ r/(n-2) & \text{for } n \geq 3. \end{cases}$$

Now integrating with respect to r, we conclude that Φ is integrable (meaning the integral of $|\Phi|$ is finite) over $B(\mathbf{0}, r)$, and hence over any bounded subset of \mathbb{R}^n . From this, we conclude that not only is

$$u(\mathbf{x}) = \Phi * f(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{y}) f(\mathbf{x} - \mathbf{y}) d^n \mathbf{y}$$

well defined, but u is C^2 as well, and in fact

$$\Delta u = \Phi * \Delta f.$$

This is easy if f has compact support; it is also true if f and its derivatives up to second order vanish sufficiently fast at infinity, but we are not going to bother with this refinement.

In particular,

$$\Delta u(\mathbf{0}) = \int_{\mathbb{R}^n} \Phi(\mathbf{y}) \Delta f(-\mathbf{y}) \, \mathrm{d}^n \mathbf{y} = \int_{\mathbb{R}^n} \Phi(\mathbf{y}) \Delta f(\mathbf{y}) \, \mathrm{d}^n \mathbf{y}$$

thanks the symmetry of Φ . (Not essential, but it's one less minus sign to track.) We want to use Green's second identity to move the Laplacian to Φ instead. But then we need to restrict attention to a bounded region, and we need to avoid the singularity of Φ at the origin. (It is this singularity that causes the answer to be non-zero, after all.) Pick R sufficiently large so $f(\mathbf{y}) = 0$ for $|\mathbf{y}| \ge R$, so that integrating over $B(\mathbf{0}, R)$ does not change the integral. Then, thanks to the integrability of Φ near the origin, we find

$$\Delta u(\mathbf{0}) = \lim_{\varepsilon \to 0} \int_{B(\mathbf{0},R) \setminus B(\mathbf{0},\varepsilon)} \Phi(\mathbf{y}) \, \Delta f(\mathbf{y}) \, \mathrm{d}^n \mathbf{y}.$$

This integral can be transformed by Green's second identity, resulting in

$$\Delta u(\mathbf{0}) = \lim_{\varepsilon \to 0} \left(\int_{B(\mathbf{0},R) \setminus B(\mathbf{0},\varepsilon)} \Delta \Phi(\mathbf{y}) f(\mathbf{y}) \, \mathrm{d}^n \mathbf{y} + \int_{\partial (B(\mathbf{0},R) \setminus B(\mathbf{0},\varepsilon))} (\Phi \partial_\nu f - f \partial_\nu \Phi) \, \mathrm{d}S \right).$$

The first integral vanishes because $\Delta \Phi = 0$, and in the second integral we can ignore the outer boundary $\partial B(\mathbf{0}, R)$ because $f = \partial_{y} f = 0$ there. Finally, the normal

vector ν points *inward* on the inner boundary $\partial B(\mathbf{0}, \varepsilon)$, so we get a sign change when we consider the outward point normal instead. Thus we have

$$\Delta u(\mathbf{0}) = \lim_{\varepsilon \to 0} \int_{\partial B(\mathbf{0},\varepsilon)} (f \partial_{\nu} \Phi - \Phi \partial_{\nu} f) \, \mathrm{d}S.$$

Here, the integral of $\Phi \partial_{\nu} f$ vanishes in the limit as $\varepsilon \to 0$, since $\partial_{\nu} f$ is bounded. And on $\partial B(\mathbf{0}, \varepsilon)$, we find $\partial_{\nu} \Phi = -1/(A_n r^{n-1})$, so

$$\Delta u(\mathbf{0}) = -\lim_{\varepsilon \to 0} \frac{1}{A_n r^{n-1}} \int_{\partial B(\mathbf{0},\varepsilon)} f \, \mathrm{d}S = -f(\mathbf{0}),$$

and the proof is complete.

Bounded domains and Green's function. Let Ω be a bounded domain with piecewise C^1 boundary. The weak maximum principle (even without the "nice" boundary) immediately shows that the Dirichlet problem

$$-\Delta u = f \quad \text{in } \Omega,$$

$$u = g \quad \text{on } \partial \Omega$$
(DP)

has at most one solution for any given data f and g.

Our goal in this section is to generalize the representation formula (7) to this setting. We first concentrate on homogeneous boundary data, i.e., g = 0. It will turn out that we get the case for $g \neq 0$ "for free".

First, rewrite (7) to read

$$u(\boldsymbol{x}) = \int_{\mathbb{R}^n} \Phi(\boldsymbol{x} - \boldsymbol{y}) f(\boldsymbol{y}) \, \mathrm{d}^n \boldsymbol{y}.$$

A similar formula for solutions on Ω might look like

$$u(\mathbf{x}) = \int_{\mathbb{R}^n} G_{\mathbf{y}}(\mathbf{x}) f(\mathbf{y}) \,\mathrm{d}^n \mathbf{y}$$

instead. To ensure that this satisfies u = 0 on $\partial \Omega$, we want $G_y(x) = 0$ for $x \in \partial \Omega$. Apart from that, we want $G_y(x)$ (as a function of x) to be as much "like" $\Phi(x - y)$ as possible. To make that precise:

Definition. Assume that, for each $y \in \Omega$, there exists a function $H_y \in C(\overline{\Omega})$ which is harmonic in Ω and satisfies

$$H_{\mathbf{y}}(\mathbf{x}) = \Phi(\mathbf{x} - \mathbf{y}) \text{ for } \mathbf{x} \in \partial \Omega.$$

Version 2017-10-04

By the maximum principle, this function is unique. Then the function G_y defined by

$$G_{\mathbf{v}}(\mathbf{x}) = \Phi(\mathbf{x} - \mathbf{y}) - H_{\mathbf{v}}(\mathbf{x})$$

is called the *Green's function* associated with Ω . Clearly, this function is continuous on $\overline{\Omega} \setminus \{y\}$ and harmonic on $\Omega \setminus \{y\}$, and it vanishes on $\partial\Omega$.

To discover how this helps us write a solution formula for the Dirichlet problem, we concentrate first on the Φ part.

For simplicity, we temporarily put $\mathbf{y} = \mathbf{0}$, assuming that $\mathbf{0} \in \Omega$. If $\varepsilon > 0$ is small enough, $\overline{B}(\mathbf{0},\varepsilon) \subset \Omega$. Put $\Omega_{\varepsilon} = \Omega \setminus \overline{B}(\mathbf{0},\varepsilon)$, and apply Green's second identity to Φ and an arbitrary function $u \in C^2(\overline{\Omega})$:

$$\begin{split} \int_{\Omega_{\varepsilon}} (u \,\Delta \Phi - \Phi \,\Delta u) \,\mathrm{d}^{n} \boldsymbol{x} &= \int_{\partial \Omega_{\varepsilon}} (u \,\partial_{\nu} \Phi - \Phi \,\partial_{\nu} u) \,\mathrm{d}S \\ &= \int_{\partial \Omega} (u \,\partial_{\nu} \Phi - \Phi \,\partial_{\nu} u) \,\mathrm{d}S - \int_{\partial B(\boldsymbol{0},\varepsilon)} (u \,\partial_{\nu} \Phi - \Phi \,\partial_{\nu} u) \,\mathrm{d}S, \end{split}$$

where the minus sign in front of the last integral is due to the direction of the normal vector $\boldsymbol{\nu}$ on $\partial B(\mathbf{0}, \varepsilon)$ pointing out of the ball, whereas the normal vector on that part of $\partial \Omega_{\varepsilon}$ points into the ball.

Now let $\varepsilon \to 0$. The red term on the left is already zero, while the boundary integral of the red term on the right will vanish in the limit. (For $|\partial_{\nu} u| \le |\nabla u|$, which is bounded, and the integral of Φ converges to zero.) Finally, the integral of the green term will converge to $-u(\mathbf{0})$, so we end up with the representation formula

$$u(\mathbf{y}) = -\int_{\Omega} \Phi \Delta u \, \mathrm{d}^{n} \mathbf{x} - \int_{\partial \Omega} \left(u \, \partial_{\nu} \Phi - \Phi \, \partial_{\nu} u \right) \mathrm{d}S, \qquad \mathbf{y} \in \Omega.$$
(8)

(We proved it only for y = 0, but translation invariance ensures that the result generalizes. Or you could rerun the proof with $\Phi(x)$ replaced by $\Phi_y(x) = \Phi(x-y)$ and $B(0, \varepsilon)$ by $B(y, \varepsilon)$.)

Repeat the same calculation with Φ replaced by H_y . This is much easier, since H_y is harmonic we do not need to remove a ball: Green's second identity immediately yields

$$\int_{\Omega} \left(\boldsymbol{u} \ \Delta \boldsymbol{H}_{\boldsymbol{y}} - \boldsymbol{H}_{\boldsymbol{y}} \Delta \boldsymbol{u} \right) \mathrm{d}^{\boldsymbol{n}} \boldsymbol{x} = \int_{\partial \Omega} \left(\boldsymbol{u} \ \partial_{\boldsymbol{\nu}} \boldsymbol{H}_{\boldsymbol{y}} - \boldsymbol{H}_{\boldsymbol{y}} \partial_{\boldsymbol{\nu}} \boldsymbol{u} \right) \mathrm{d}S,$$

where again the red term vanishes. Rearranging this into

$$\int_{\Omega} H_{\mathbf{y}} \Delta u \, \mathrm{d}^{n} \mathbf{x} + \int_{\partial \Omega} \left(u \, \partial_{\nu} H_{\mathbf{y}} - H_{\mathbf{y}} \partial_{\nu} u \right) \mathrm{d}S = 0$$

and adding it to the right hand side of (8), we obtain

$$u(\mathbf{y}) = -\int_{\Omega} G_{\mathbf{y}} \Delta u \, \mathrm{d}^{n} \mathbf{x} - \int_{\partial \Omega} \left(u \, \partial_{\nu} G_{\mathbf{y}} - \frac{G_{\mathbf{y}}}{G_{\mathbf{y}}} \partial_{\nu} u \right) \mathrm{d}S$$

where the red term is zero by construction, so we finally have

$$u(\mathbf{y}) = -\int_{\Omega} G_{\mathbf{y}} \Delta u \, \mathrm{d}^{n} \mathbf{x} - \int_{\partial \Omega} u \, \partial_{\nu} G_{\mathbf{y}} \, \mathrm{d}S, \qquad \mathbf{y} \in \Omega.$$

We have proved

Theorem 10. If $\Omega \subset \mathbb{R}^n$ is a bounded region with C^1 boundary, and if Ω admits a Green's function G, then the solution $u \in C^2(\overline{\Omega})$ of (DP), if it exists, is given by

$$u(\mathbf{y}) = \int_{\Omega} G_{\mathbf{y}}(\mathbf{x}) f(\mathbf{x}) d^{n}\mathbf{x} - \int_{\partial\Omega} \partial_{\nu} G_{\mathbf{y}}(\mathbf{x}) g(\mathbf{x}) dS(\mathbf{x}), \qquad \mathbf{y} \in \Omega.$$
(9)

Notice the careful wording: We have not shown that the Dirichlet problem has a solution. We have only shown what it must be, if it solves the problem.

We now show that Green's function is (usually) symmetric.

Proposition 11. Assume that Ω is a bounded region with piecewice C^1 boundary, for which the Dirichlet problem (DP) always has a solution for any given continuous data. In particular, this implies the existence of a Green's function. Then the Green's function G for this region satisfies $G_y(\mathbf{x}) = G_x(\mathbf{y})$, whenever $\mathbf{x}, \mathbf{y} \in \Omega$.

Proof. Let $f, g \in C(\overline{\Omega})$, and let u, v solve $-\Delta u = f$ and $-\Delta v = g$ in $\Omega, u = v = 0$ on $\partial\Omega$. Thus

$$u(\mathbf{y}) = \int_{\Omega} G_{\mathbf{y}}(\mathbf{x}) f(\mathbf{x}) d^{n}\mathbf{x}, \quad v(\mathbf{y}) = \int_{\Omega} G_{\mathbf{y}}(\mathbf{x}) g(\mathbf{x}) d^{n}\mathbf{x}.$$

Since *u* and *v* vanish on $\partial \Omega$, Green's second identity applied to *u* and *v* implies

$$\int_{\Omega} u(\mathbf{y}) g(\mathbf{y}) \, \mathrm{d}^n \mathbf{y} = \int_{\Omega} v(\mathbf{y}) f(\mathbf{y}) \, \mathrm{d}^n \mathbf{y}.$$

Plugging in the above formulas for u and v, swapping the integration variables x and y in one of the integrals, and rearranging, we get

$$\int_{\Omega} \int_{\Omega} \left(G_{\mathbf{y}}(\mathbf{x}) - G_{\mathbf{x}}(\mathbf{y}) \right) f(\mathbf{x}) g(\mathbf{y}) \, \mathrm{d}^{n} \mathbf{x} \, \mathrm{d}^{n} \mathbf{y} = 0,$$

from which the desired conclusion quickly follows.

In more detail, let ρ be a standard mollifier, and put $\rho_{\varepsilon}(\mathbf{x}) = \varepsilon^{-n}\rho(\mathbf{x}/\varepsilon)$. If $\mathbf{x}_0, \mathbf{y}_y \in \Omega$ and $\mathbf{x}_0 \neq \mathbf{y}_y$, put $f(\mathbf{x}) = \rho_{\varepsilon}(\mathbf{x} - \mathbf{x}_0)$ and $g(\mathbf{y}) = \rho_{\varepsilon}(\mathbf{y} - \mathbf{y}_0)$. Inserting these into the double integral and letting $\varepsilon \to 0$, we get $G_{\mathbf{y}_0}(\mathbf{x}_0) - G_{\mathbf{x}_0}(\mathbf{y}_0)$ in the limit, so that $G_{\mathbf{y}_0}(\mathbf{x}_0) = G_{\mathbf{x}_0}(\mathbf{y}_0)$.

Remark. It may be interesting to study the above proof from an elementary linear algebra point of view. The last part resembles the proof that, if *A* is a quadratic matrix satisfying $y^T A x = x^t A y$ for all vectors *x* and *y*, then *A* is symmetric. (Just take $x = e_i$ and $y = e_j$.) The first part resembles the proof that the inverse of an invertible symmetric matrix is symmetric. Think of the "matrix" $G_x(y)$ (where *x* and *y* play the rôles of matrix indices) as the inverse of the operator $-\Delta$. And the symmetry of this operator is just the identity $\int_{\Omega} u \Delta v = \int_{\Omega} v \Delta u$. (Green's second identity, when both functions vanish on the boundary.)

Green's function for balls. Here we compute Green's function for the open unit ball \mathbb{B}^n in \mathbb{R}^n . I will drop some exponents and write \mathbb{B} instead of \mathbb{B}^m and $\mathbb{S} = \partial \mathbb{B}$ instead of \mathbb{S}^{n-1} .

If $y \in \mathbb{B}$, we need to find a harmonic function on \mathbb{B} with the same values as $\Phi(x - y)$ for $x \in S$. The trick is to "put a charge" at a suitable point w outside \mathbb{B} . It turns out that $w = y/|y|^2$ does the trick. Since |x| = 1, we find

$$|x - y|^2 = 1 + |y|^2 - 2x \cdot y$$

and

$$|\mathbf{x} - \mathbf{w}|^2 = 1 + |\mathbf{w}|^2 - 2\mathbf{x} \cdot \mathbf{w} = 1 + \frac{1}{|\mathbf{y}|^2} - 2\frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{y}|^2} = \frac{|\mathbf{y} - \mathbf{x}|^2}{|\mathbf{y}|^2},$$

so that

$$|\boldsymbol{w}-\boldsymbol{x}|=\frac{|\boldsymbol{y}-\boldsymbol{x}|}{|\boldsymbol{y}|}.$$

For $n \ge 3$, this gives

$$\Phi(\boldsymbol{w}-\boldsymbol{x}) = \frac{1}{(n-2)A_n|\boldsymbol{w}-\boldsymbol{x}|^{n-2}} = |\boldsymbol{y}|^{n-2}\Phi(\boldsymbol{y}-\boldsymbol{x}),$$

so we should put

$$H_{y}(\mathbf{x}) = \frac{\Phi(\mathbf{w} - \mathbf{x})}{|\mathbf{y}|^{n-2}} = \frac{1}{(n-2)A_{n}|\mathbf{y}|^{n-2}|\mathbf{w} - \mathbf{x}|^{n-2}}$$

where we note that

$$|\mathbf{y}|^2 |\mathbf{w} - \mathbf{x}|^2 = |\mathbf{y}|^2 (|\mathbf{w}|^2 + |\mathbf{x}|^2 - 2\mathbf{x} \cdot \mathbf{w}) = 1 + |\mathbf{x}|^2 |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y},$$

Version 2017-10-04

Harmonicfunctionology

so we get

$$G_{\mathbf{y}}(\mathbf{x}) = \frac{1}{(n-2)A_n} \left(\frac{1}{|\mathbf{x} - \mathbf{y}|^{n-2}} - \frac{1}{(1+|\mathbf{x}|^2|\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y})^{(n-2)/2}} \right) \quad (n \ge 3)$$

which is indeed symmetric in *x*, *y* as expected.

Next, the same computation for n = 2: We find (when $x \in S$)

$$\Phi(\boldsymbol{w}-\boldsymbol{x}) = -\frac{\ln|\boldsymbol{w}-\boldsymbol{x}|}{2\pi} = \frac{\ln|\boldsymbol{y}|}{2\pi} + \Phi(\boldsymbol{y}-\boldsymbol{x}),$$

so we put

$$H_{\mathbf{y}}(\mathbf{x}) = -\frac{\ln|\mathbf{y}|}{2\pi} + \Phi(\mathbf{w} - \mathbf{x}) = -\frac{\ln(|\mathbf{y}||\mathbf{w} - \mathbf{x}|)}{2\pi}$$

and get

$$G_{\mathbf{y}}(\mathbf{x}) = -\frac{\ln|\mathbf{y} - \mathbf{x}|}{2\pi} + \frac{\ln(1 + |\mathbf{x}|^2|\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y})}{4\pi} \quad (n = 2)$$

which is again symmetric. We can also write this on the form

$$G_{\mathbf{y}}(\mathbf{x}) = -\frac{\ln(|\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y})}{4\pi} + \frac{\ln(1 + |\mathbf{x}|^2|\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y})}{4\pi} \quad (n = 2)$$

When solving the Dirichlet problem on the unit disk $\mathbb{D} \subset \mathbb{R}^2$, we need the normal derivative $\partial_{\nu}G_{\mathbf{y}}(\mathbf{x})$ for $\mathbf{x} \in \mathbb{S}$ which is simply the derivative of $G_{\mathbf{y}}(t\mathbf{x})$ taken at t = 1, resulting in

$$\partial_{\nu}G_{\mathbf{y}}(\mathbf{x}) = \frac{-2 + 2\mathbf{x} \cdot \mathbf{y} + 2|\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y}}{4\pi(1 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y})} = \frac{|\mathbf{y}|^2 - 1}{2\pi(1 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y})}.$$

If we put r = |y| and let θ be the angle between the two vectors x and y, we get

$$-\partial_{\nu}G_{\boldsymbol{y}}(\boldsymbol{x}) = \frac{1}{2\pi} \frac{1-r^2}{1+r^2-2r\cos\theta}$$

which is known as the *Poisson kernel*. Referring back to (9), the solution to the Dirichlet problem $-\Delta u = 0$ on \mathbb{D} with $u(\cos \theta, \sin \theta) = g(\theta)$ should then be given by

$$u(r\cos\varphi, r\sin\varphi) = \frac{1-r^2}{2\pi} \int_{-\pi}^{\pi} \frac{g(\varphi - \theta)}{1+r^2 - 2r\cos\theta} \,\mathrm{d}\theta$$

This is known as *Poisson's integral formula*. It was originally derived using separation of variables and a Fourier analysis:

For this, we may note that the Laplace operator in polar coordinates takes the form

$$\Delta u = r^{-1} (r u_r)_r + r^{-2} u_{\theta \theta}.$$

We look for harmonic functions of the form $u = R(r)\Theta(\theta)$, resulting in $r^{-1}(rR')'\Theta + r^{-2}R\Theta'' = 0$. After separating the variables, we are left with $\Theta'' = -\lambda\Theta$ and $(rR')' = \lambda r^{-1}R$. Since Θ must be 2π -periodic, we must put $\lambda = n^2$ for an integer *n*, so the *R* equation is $r(rR')' = n^2R$. We try $R = r^k$, and get $rR' = kr^k$, $r(rR')' = k^2r^k$, with the non-trivial solutions $k = \pm n$. Rejecting solutions with negative *k* (which have a singularity at r = 0), we are therefore left with $R = r^{|n|}$. Thus we are led to look for solutions of the form

$$u(r\cos\varphi, r\sin\varphi) = \sum_{n=-\infty}^{\infty} c_n r^{|n|} e^{in\varphi}.$$

Matching this to $g(\theta)$ at r = 1, we should have

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) e^{-in\theta} \,\mathrm{d}\theta,$$

and therefore

$$u(r\cos\varphi, r\sin\varphi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} g(\theta) r^{|n|} e^{in(\varphi-\theta)} \, \mathrm{d}\theta. = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) P(r,\varphi-\theta) \, \mathrm{d}\theta,$$

where

$$P(r,\theta) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta}.$$

Here we note that

$$\sum_{k=0}^{\infty} r^k e^{\pm ik\theta} = \frac{1}{1 - re^{\pm ik\theta}},$$

so

$$P(r,\theta) = \frac{1}{2\pi} \left(\frac{1}{1 - re^{ik\theta}} + \frac{1}{1 - re^{-ik\theta}} - 1 \right)$$
$$= \frac{1}{2\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos\theta},$$

which we recognize as the Poisson kernel introduced above.