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Problem 1 Consider the problem
Y
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= 0
u(x, 0) = g(x).

Find the solution for

g(x) =
Y
]

[
0, when x < 0
x ≠ 2, when x > 0.

In particular, determine the shock curve in the xt-plane starting at the origin.

Problem 2 The function h = h(x, y, z) is harmonic in the whole space R3,
i. e., �h = 0. Given that
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where the latter integration is over the domain 1 < x

2 + y

2 + z
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< 4.

Problem 3 Let v = v(x, y, z, t) be the solution of the wave equation
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that has the initial values

v(x, y, z, 0) = 0, v

t

(x, y, z, 0) =
Y
]

[
13 if |x| < 1
0 otherwise

.

Determine v(100, 0, 0, t) for t > 101. Find the limit lim v(100, 0, 0, t) as t æ Œ.

1

1
The area of a zone on a sphere has the formula “2firh” and the sphere has area 4fir2

(Archimedes).
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Problem 4 The problem
Y
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v (0 < x < 1, t > 0)
v(x, 0) = 0, v

t

(x, 0) = 0, v(0, t) = 0, v(1, t) = 0

has at most one solution v = v(x, t) with continuous second derivatives in the
region 0 Æ x Æ 1, t Ø 0. Prove this uniqueness using the “energy”

E(t) = 1
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dx.

Problem 5 Assume that the variational integral
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dx dy dz

has a minimum among all su�ciently smooth functions u = u(x, y, z) with bound-
ary values 0 on the sides of the cube. Find a second order di�erential equation for
the minimizer (the Euler-Lagrange Equation).

Problem 6 Suppose2 that w œ C

2(�) is a solution to the equation

�w = w(w ≠ 10) ≠ 10

with boundary values w = 5 on ˆ�. Here � is a bounded domain in space. Show
that w < 11 in �.

Good luck!

2
The notation means that the function has second derivatives that are continuous up to the

boundary of the domain


