NTNU - Trondheim Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for
 TMA4305 Partial Differential Equations

Academic contact during examination: Peter Lindqvist
Phone: 73593529

Examination date: November 30th 2015
Examination time (from-to): 09:00-13:00
Permitted examination support material: Ett gult A4-ark stemplet fra Instituttet med valgfri paaskrift av studenten. Bestemt, enkel kalkulator tillaten.

Other information:
There are 6 problems.

Language: English
Number of pages: 2
Number pages enclosed: 0

Checked by:

Problem 1 Consider the problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 \\
u(x, 0)=g(x)
\end{array}\right.
$$

Find the solution for

$$
g(x)=\left\{\begin{array}{lr}
0, & \text { when } \quad x<0 \\
x-2, & \text { when } \quad x>0
\end{array}\right.
$$

In particular, determine the shock curve in the $x t$-plane starting at the origin.

Problem 2 The function $h=h(x, y, z)$ is harmonic in the whole space \mathbb{R}^{3}, i. e., $\quad \Delta h=0$. Given that

$$
\iiint_{x^{2}+y^{2}+z^{2}<1} h(x, y, z) d x d y d z=\frac{\pi}{3}
$$

find

$$
\iiint_{1<x^{2}+y^{2}+z^{2}<4} h(x, y, z) d x d y d z=?
$$

where the latter integration is over the domain $1<x^{2}+y^{2}+z^{2}<4$.

Problem 3 Let $v=v(x, y, z, t)$ be the solution of the wave equation

$$
\frac{\partial^{2} v}{\partial t^{2}}=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}
$$

that has the initial values

$$
v(x, y, z, 0)=0, v_{t}(x, y, z, 0)=\left\{\begin{array}{lr}
13 & \text { if }|x|<1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Determine $v(100,0,0, t)$ for $t>101$. Find the limit $\lim v(100,0,0, t)$ as $t \rightarrow \infty .{ }^{1}$

[^0]Problem 4 The problem

$$
\begin{cases}v_{t t}=c^{2} v_{x x}-e^{x} v & (0<x<1, t>0) \\ v(x, 0)=0, v_{t}(x, 0)=0, & v(0, t)=0, v(1, t)=0\end{cases}
$$

has at most one solution $v=v(x, t)$ with continuous second derivatives in the region $0 \leq x \leq 1, t \geq 0$. Prove this uniqueness using the "energy"

$$
E(t)=\frac{1}{2} \int_{0}^{1}\left(v_{t}(x, t)^{2}+c^{2} v_{x}(x, t)^{2}+e^{x} v(x, t)^{2}\right) d x
$$

Problem 5 Assume that the variational integral

$$
I(u)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(e^{x} u_{x}^{2}+e^{y} u_{y}^{2}+e^{z} u_{z}^{2}-e^{x y z} u\right) d x d y d z
$$

has a minimum among all sufficiently smooth functions $u=u(x, y, z)$ with boundary values 0 on the sides of the cube. Find a second order differential equation for the minimizer (the Euler-Lagrange Equation).

Problem 6 Suppose 2 that $w \in C^{2}(\bar{\Omega})$ is a solution to the equation

$$
\Delta w=w(w-10)-10
$$

with boundary values $w=5$ on $\partial \Omega$. Here Ω is a bounded domain in space. Show that $w<11$ in Ω.

Good luck!

[^1]
[^0]: ${ }^{1}$ The area of a zone on a sphere has the formula " $2 \pi r h$ " and the sphere has area $4 \pi r{ }^{2}$ (Archimedes).

[^1]: ${ }^{2}$ The notation means that the function has second derivatives that are continuous up to the boundary of the domain

