

Department of Mathematical Sciences

Examination paper for TMA4305 Partial Differential Equations

Academic contact during examination: Peter Lindqvist

Phone: 73593529

Examination date: November 30th 2015

Examination time (from-to): 09:00-13:00

Permitted examination support material: Ett gult A4-ark stemplet fra Instituttet med valgfri paaskrift av studenten. Bestemt, enkel kalkulator tillaten.

Other information: There are 6 problems.

Language: English Number of pages: 2 Number pages enclosed: 0

Checked by:

Problem 1 Consider the problem

$$\begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0\\ u(x,0) = g(x). \end{cases}$$

Find the solution for

$$g(x) = \begin{cases} 0, & \text{when } x < 0\\ x - 2, & \text{when } x > 0. \end{cases}$$

In particular, determine the shock curve in the xt-plane starting at the origin.

Problem 2 The function h = h(x, y, z) is harmonic in the whole space \mathbb{R}^3 , i.e., $\Delta h = 0$. Given that

$$\iint_{x^2+y^2+z^2<1} h(x,y,z) \, dx \, dy \, dz \; = \; \frac{\pi}{3},$$

find

$$\iiint_{$$

where the latter integration is over the domain $1 < x^2 + y^2 + z^2 < 4$.

1

Problem 3 Let v = v(x, y, z, t) be the solution of the wave equation

$$\frac{\partial^2 v}{\partial t^2} = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}$$

that has the initial values

$$v(x, y, z, 0) = 0, v_t(x, y, z, 0) = \begin{cases} 13 & \text{if } |x| < 1 \\ 0 & \text{otherwise} \end{cases}$$

•

Determine v(100, 0, 0, t) for t > 101. Find the limit $\lim v(100, 0, 0, t)$ as $t \to \infty$.¹

¹The area of a zone on a sphere has the formula " $2\pi rh$ " and the sphere has area $4\pi r^2$ (Archimedes).

Problem 4 The problem

$$\begin{cases} v_{tt} = c^2 v_{xx} - e^x v & (0 < x < 1, t > 0) \\ v(x,0) = 0, v_t(x,0) = 0, v(0,t) = 0, v(1,t) = 0 \end{cases}$$

has at most one solution v = v(x,t) with continuous second derivatives in the region $0 \le x \le 1, t \ge 0$. Prove this uniqueness using the "energy"

$$E(t) = \frac{1}{2} \int_0^1 \left(v_t(x,t)^2 + c^2 v_x(x,t)^2 + e^x v(x,t)^2 \right) \, dx.$$

Problem 5 Assume that the variational integral

$$I(u) = \int_0^1 \int_0^1 \int_0^1 \left(e^x u_x^2 + e^y u_y^2 + e^z u_z^2 - e^{xyz} u \right) dx \, dy \, dz$$

has a minimum among all sufficiently smooth functions u = u(x, y, z) with boundary values 0 on the sides of the cube. Find a second order differential equation for the minimizer (the Euler-Lagrange Equation).

Problem 6 Suppose² that $w \in C^2(\overline{\Omega})$ is a solution to the equation

$$\Delta w = w(w - 10) - 10$$

with boundary values w = 5 on $\partial \Omega$. Here Ω is a bounded domain in space. Show that w < 11 in Ω .

Good luck!

Page 2 of 2

 $^{^2\}mathrm{The}$ notation means that the function has second derivatives that are continuous up to the boundary of the domain