NTNU - Trondheim
Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for
 TMA4305 Partial Differential Equations

Academic contact during examination: Peter Lindqvist
Phone: 73593529

Examination date: 1. December 2014
Examination time (from-to): 09:00-13:00
Permitted examination support material: One yellow A4-sized sheet of paper stamped by the Department of Mathematical Sciences. On this sheet the student may write whatever he wants. No other aids permitted.

Language: English
Number of pages: 2
Number pages enclosed: 0

Problem 1 Suppose that $u=u(x, y), v=v(x, y)$ satisfy the Cauchy-Riemann Equations

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{array}\right.
$$

in the whole plane. Assuming that the second derivatives are continuous, calculate the Laplacian

$$
\Delta(u v)
$$

Which of the alternatives $\Delta(u v)>0, \Delta(u v)=0$, or $\Delta(u v)<0$ holds ?

Problem 2 Consider the equation

$$
u_{t}=u_{x x}+u_{x}^{2}-1, \quad \text { in } \quad Q_{T}=(-1,1) \times(0, T) .
$$

Show that a solution with continuous second derivatives in $[-1,1] \times[0, T]$ cannot attain its maximum anywhere else than on the parabolic boundary.

Problem 3 The energy integral for the Klein-Gordon Equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta u+m^{2} u=0
$$

where m and c are constants and $u=u(x, y, z, t)$, is given by

$$
E(t)=\frac{1}{2} \iiint_{\mathbb{R}^{3}}\left(u_{t}^{2}+c^{2}|\nabla u|^{2}+m^{2} u^{2}\right) d x d y d z
$$

a) Suppose that $u \in C^{2}\left(\mathbb{R}^{3} \times \mathbb{R}\right)$ and that $u=0$ when $x^{2}+y^{2}+z^{2} \geq R^{2}(=$ some large number). Show that $E(t)$ is constant.
b) Show that the initial value problem

$$
\left\{\begin{array}{l}
u(x, y, x, 0)=f(x, y, z) \\
u_{t}(x, y, z, 0)=g(x, y, z)
\end{array}\right.
$$

for the Klein-Gordon Equation has at most one solution $u \in C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$ which is zero when $x^{2}+y^{2}+z^{2} \geq R^{2}$.

Problem 4 Consider the weak solutions of the equation

$$
2 \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{4}}{4}\right)=0
$$

when $-\infty<x<\infty$ and $t>0$.
a) Solve the initial value problem

$$
u(x, 0)=\left\{\begin{array}{lll}
2 & \text { when } & x<0 \\
1 & \text { when } & x>0
\end{array}\right.
$$

Draw a picture of the shock curve and the characteristics.
b) Solve the initial value problem

$$
u(x, 0)=\left\{\begin{array}{lll}
1 & \text { when } & x<1 \\
2 & \text { when } & x>1
\end{array}\right.
$$

Give an explicit formula for the rarefaction wave. Draw a picture in the $x t$-plane.

Problem 5 Let $v=v(x, y, x, t)$ denote the solution of the wave equation

$$
v_{t t}=9\left(v_{x x}+v_{y y}+v_{z z}\right) \quad \text { in } \quad \mathbb{R}^{3} \times(0, \infty)
$$

with inital values

When is $v(0,0,1, t) \neq 0$? Determine also

$$
\lim _{t \rightarrow \infty} v(0,0,1, t) .
$$

Good luck!

