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Lecture 2 in week 44: Distibutions, estimation and uncertainty

1 Confidence sets

Example 1.1 (Bernoulli (continued from previous lecture)) Let the data be x = 9 suc-
cesses out of n = 10 trials, and let the prior be π(θ) = 1. What is the success probability θ?

Of course, we cannot find the true θ, but we can estimate it! Let the estimator be

θ̂ = x

n
= 90% (1)

Yet, we are still not finished, as we also need to state the standard uncertainty, as SI
demands. We can let

u1 =
√

1
n

θ̂(1 − θ̂) (2)

Need to do some calculations in order to make sure that (2) is a reasonable uncertainty.
We have that B ∼ B(θ). The expectation is

EB = b1P (B = b1) + b2P (B = b2)
= 0 ∗ P (B = 0) + 1 ∗ P (B = 1)
= θ

Therefore x
n

= b. Additionally, the variance is

V arB = E(B − EB)2

= EB2 − (EB)2 , use that B2 = B

= θ(1 − θ)

Therefore V arB = 1
n
θ(1 − θ) which implies StdB =

√
1
n
θ(1 − θ). This yields that

u =
√

1
n
θ̂(1 − θ̂), meaning that the chosen standard uncertainty in (2) makes sense. As it

is a function of the minimal sufficient statistic b̄, the estimate is also in harmony with the
sufficiency principle.

Another alternative of a standard uncertainty could the

u2 = 1√
n

s (3)

One find that E(S2|T ) where T is a complete sufficient statistic improves S2 as an esti-
mator of σ2. This is because of the Rao-Blackwell and Lehmann–Scheffé theorems. It can
also be insightful to look at the definition of conditional expectation.
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Lecture 2 in week 44: Distibutions, estimation and uncertainty

For this example, one can also see that E(S2|X) = S2. This is because of the fact that S
is a function of X.

Want to show that S2 is a function of θ̂.

S2 = n

n − 1
(
b − b

)2

= n

n − 1
(
b2 − (b)2

)

The empirical distribution is 1
n

(δx1 + ... + δxn) where δxi
is the point mass at point xi. This

is a simple distribution. In our case the empirical distribution will be

1
n

(xδ1 + (n − x)δ0) (4)

From numerical calculations, we can find that the numerical value for (2) is

u1 = 1
10 ∗ 3√

10
≈ 0.095 = 9.5% ≈ 10%

This means that we can state our estimator as

θ̂ = x

n
= 90(10)% (5)

Note that from numerical calculations, we can also find that the numerical value for (3) is

u2 = 1√
n − 1

√
θ̂(1 − θ̂) = n

n − 1
x

n

(
1 − x

n

)
≈ 10%

It is not surprising that u2 is a bit larger than u1 from the (2) case. Note that it is known
that 0 ≤ θ ≤ 100%.
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2 Expanded uncertainty

The expanded uncertainty is equivalent with the confidence interval (or sometimes the cred-
ibility interval). It will be given as θ̃ ± k±u with coverage factor k± ≈ 2 for 95% coverage.

Note that any confidence interval can be stated on the form θ̂estimator ± k±u.
An approx fix can be to define η = ln

(
θ

1−θ

)
∈ R, which yields

η̂ = ln

 θ̂

1 − θ̂

 (6)

This estimator is not unbiased. In fact, no unbiased estimator φ of η exists!

An approximate confidence interval will be
η̃ ± 2uη (7)

By using the delta method stated in ISO GUM we can find the approximated confidence
interval

[η̂1, η̂2] ⇒ [θ̃1, θ̃2] (8)

3 Bayes

We have
π(θ|x) ∝ L(θ|x)π(θ) = θx(1 − θ)n−x ∗ θα0−1(1 − θ)β0−1

where L(θ) is the likelihood and π(θ) is the prior distribution. Then the posterior
π(θ|x) ∝ θ(x+α0)−1(1 − θ)(β0−y)−1

where y = n − x. This yields the posterior distribution
θ|x ∼ Beta (x + α0, y + β0) (9)

From (9) we can calculate the Bayes estimator by finding the posterior expectation

E(θ|x) = x + α0

x + α0 + y + β0
= θ̂B (10)

For the uniform prior we have π(θ) = 1, which yields α0 = β0 = 1. This is proper. For a
Jeffreys prior we get α0 = β0 = 1

2 . Lastly, for a Haldane prior we get α0 = β0 = 0, which
yields that θ̂B = θ̃. The Haldane prior is improper.

The Bayes probabilities can be computed using a link the Bernoulli. This was done by
Bayes in 1761.
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4 Exact intervals

Start with H0 : θ ≤ θ0. Reject if X ≥ x0. This is an optimal test because of the Karlin-
Rubin theorem. (To be continued...)
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