

Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4295 Statistical

inference Lecturer Fall 2023: Gunnar Taraldsen

Scribe: Kebene Baissa and Elling Svee

Lecture 2 in week 44: Distibutions, estimation and uncertainty

Contents

1	Confidence sets	2
2	Expanded uncertainty	4
3	Bayes	4
4	Exact intervals	5
De	finitions	6
Theorems		6
Examples		
Index		

1 Confidence sets

Example 1.1 (Bernoulli (continued from previous lecture)) Let the data be x = 9 successes out of n = 10 trials, and let the prior be $\pi(\theta) = 1$. What is the success probability θ ?

Of course, we cannot find the true θ , but we can estimate it! Let the *estimator* be

$$\hat{\theta} = \frac{x}{n} = 90\% \tag{1}$$

Yet, we are still not finished, as we also need to state the *standard uncertainty*, as SI demands. We can let

$$u_1 = \sqrt{\frac{1}{n}\hat{\theta}(1-\hat{\theta})} \tag{2}$$

Need to do some calculations in order to make sure that (2) is a reasonable uncertainty. We have that $B \sim B(\theta)$. The *expectation* is

$$EB = b_1 P(B = b_1) + b_2 P(B = b_2)$$

= 0 * P(B = 0) + 1 * P(B = 1)
= θ

Therefore $\frac{x}{n} = \overline{b}$. Additionally, the *variance* is

$$VarB = E(B - EB)^{2}$$

= $EB^{2} - (EB)^{2}$, use that $B^{2} = B$
= $\theta(1 - \theta)$

Therefore $Var\overline{B} = \frac{1}{n}\theta(1-\theta)$ which implies $Std\overline{B} = \sqrt{\frac{1}{n}\theta(1-\theta)}$. This yields that $u = \sqrt{\frac{1}{n}\hat{\theta}(1-\hat{\theta})}$, meaning that the chosen standard uncertainty in (2) makes sense. As it is a function of the minimal sufficient statistic \bar{b} , the estimate is also in harmony with the sufficiency principle.

Another alternative of a *standard uncertainty* could the

$$u_2 = \frac{1}{\sqrt{n}}s\tag{3}$$

One find that $E(S^2|T)$ where T is a complete sufficient statistic improves S^2 as an estimator of σ^2 . This is because of the *Rao-Blackwell* and *Lehmann–Scheffé* theorems. It can also be insightful to look at the definition of conditional expectation.

For this example, one can also see that $E(S^2|X) = S^2$. This is because of the fact that S is a function of X.

Want to show that S^2 is a function of $\hat{\theta}$.

$$S^{2} = \frac{n}{n-1} \overline{\left(b-\overline{b}\right)^{2}}$$
$$= \frac{n}{n-1} \left(\overline{b^{2}} - (\overline{b})^{2}\right)$$

The empirical distribution is $\frac{1}{n} (\delta_{x_1} + ... + \delta_{x_n})$ where δ_{x_i} is the point mass at point x_i . This is a simple distribution. In our case the empirical distribution will be

$$\frac{1}{n}\left(x\delta_1 + (n-x)\delta_0\right) \tag{4}$$

From numerical calculations, we can find that the numerical value for (2) is

$$u_1 = \frac{1}{10} * \frac{3}{\sqrt{10}} \approx 0.095 = 9.5\% \approx 10\%$$

This means that we can state our estimator as

$$\hat{\theta} = \frac{x}{n} = 90(10)\% \tag{5}$$

Note that from numerical calculations, we can also find that the numerical value for (3) is

$$u_2 = \frac{1}{\sqrt{n-1}}\sqrt{\hat{\theta}(1-\hat{\theta})} = \frac{n}{n-1}\frac{x}{n}\left(1-\frac{x}{n}\right) \approx 10\%$$

It is not surprising that u_2 is a bit larger than u_1 from the (2) case. Note that it is known that $0 \le \theta \le 100\%$.

2 Expanded uncertainty

The expanded uncertainty is equivalent with the confidence interval (or sometimes the credibility interval). It will be given as $\tilde{\theta} \pm k_{\pm}u$ with coverage factor $k_{\pm} \approx 2$ for 95% coverage.

Note that any *confidence interval* can be stated on the form $\hat{\theta}_{\text{estimator}} \pm k_{\pm}u$. An approx fix can be to define $\eta = ln\left(\frac{\theta}{1-\theta}\right) \in \mathbb{R}$, which yields

$$\hat{\eta} = \ln\left(\frac{\hat{\theta}}{1-\hat{\theta}}\right) \tag{6}$$

This estimator is not *unbiased*. In fact, no *unbiased estimator* φ of η exists!

An approximate confidence interval will be

$$\tilde{\eta} \pm 2u_{\eta} \tag{7}$$

By using the delta method stated in $ISO\ GUM$ we can find the approximated confidence interval

$$[\hat{\eta}_1, \hat{\eta}_2] \Rightarrow [\tilde{\theta}_1, \tilde{\theta}_2] \tag{8}$$

3 Bayes

We have

$$\pi(\theta|x) \propto L(\theta|x)\pi(\theta) = \theta^x (1-\theta)^{n-x} * \theta^{\alpha_0 - 1} (1-\theta)^{\beta_0 - 1}$$

where $L(\theta)$ is the likelihood and $\pi(\theta)$ is the prior distribution. Then the posterior

$$\pi(\theta|x) \propto \theta^{(x+\alpha_0)-1} (1-\theta)^{(\beta_0-y)-1}$$

where y = n - x. This yields the posterior distribution

$$\theta | x \sim Beta \left(x + \alpha_0, y + \beta_0 \right) \tag{9}$$

From (9) we can calculate the *Bayes estimator* by finding the posterior expectation

$$E(\theta|x) = \frac{x + \alpha_0}{x + \alpha_0 + y + \beta_0} = \hat{\theta}_B \tag{10}$$

For the uniform prior we have $\pi(\theta) = 1$, which yields $\alpha_0 = \beta_0 = 1$. This is proper. For a Jeffreys prior we get $\alpha_0 = \beta_0 = \frac{1}{2}$. Lastly, for a Haldane prior we get $\alpha_0 = \beta_0 = 0$, which yields that $\hat{\theta}_B = \tilde{\theta}$. The Haldane prior is improper.

The *Bayes probabilities* can be computed using a link the Bernoulli. This was done by Bayes in 1761.

4 Exact intervals

Start with $H_0: \theta \leq \theta_0$. Reject if $X \geq x_0$. This is an *optimal test* because of the Karlin-Rubin theorem. (To be continued...)

Definitions

Theorems

Examples

1	Bernoulli	(continued from	n previous	lecture)									4	2
		\	1	/										

Index

approximate confidence interval, 4 approximated confidence interval, 4

Bayes estimator, 4 Bayes probabilities, 4

complete sufficient statistic, 2 conditional expectation, 2 confidence interval, 4 coverage factor, 4 credibility interval, 4

delta method, 4

empirical distribution, 3 estimator, 2 expanded uncertainty, 4 expectation, 2

Haldane prior, 4

improper, 4 ISO GUM, 4

Jeffreys prior, 4

Karlin-Rubin theorem, 5

Lehmann–Scheffé, 2 likelihood, 4

optimal test, 5

point mass, 3 posterior distribution, 4 prior distribution, 4 proper, 4

Rao-Blackwell, 2

simple distribution, 3 standard uncertainty, 2 sufficiency principle, 2

unbiased, 4 unbiased estimator, 4 uniform prior, 4

variance, 2