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Lecture 20 in week 43: ’Set estimation’

1 Repetition

Example 1.1 (Squared logarithmic error loss) Assume a statistic t = t(x) where x is
the data. The easiest method of estimation will often be point estimation (x ∈ R), with
loss function (l = ln(t) − ln(τ))2 where l would be squared logarithmic error loss. The
difference between this squared error loss and normal, is that this includes the logarithm
which measures scale invariant apposed to invariance shift.

Example 1.2 (Loss related to type 1 and type 2 error) A test only gives two values, 0
and 1 (recall definition of a test).
If t = 1 ⇒ H1 true, and t = 0 ⇒ H0true
If τ(1 − t), τ = 1 and t = 1 ⇒ 0 loss, τ = 1 and t = 0 ⇒ loss. This gives the general
equation

τ(1 − t) + λ(1 − τ)t (1)

where τ(1 − t) corresponds to type 2 error and λ(1 − τ)t corresponds to type 1 error.

Example 1.3 (Bayes posterior distribution estimator)

t(dτ) = π(τ |x)d(τ) (2)

2 Confidence sets

Figure 1: The shortest credibility interval with level = 1 - α

Here we chose an interval (red dots) and the density is equal at t1 and t2 if π(|̇x) is unimodal
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Lecture 20 in week 43: ’Set estimation’

Definition 2.1 (Unimodal) A function is unimodal if the right and side of the
interval is non increasing and the left hand side is non decreasing. This gives the
shortest interval (proven in the book, and below).

Definition 2.2 (Confidence level) A set estimator S has confidence level 1 − α
if P (τ) ≥ 1 − α, where P is the hitting probability, τ is the parameter and S is a
random set.

Theorem 2.1 () Optimal Bayes credibility intervals from the right Haar prior
are frequentist optimal (Equivariant!)

Proof. Firstly we need to define some mathematical properties. Let x = θ ∗ u ⇔ θ = xu−1

which gives x = Θx ∗ U where Θx = x ∗ U−1, posterior.
We also have the invariance: t(x) = t(θ ∗ u) = θ ∗ t(u) ⇒ l(θ ∗ t, θ ∗ τ) = l(t, τ).
We need |θ ∗ t| = |t| = size of t

Then we can start formulating the proof.
The risk can be written as

ρ = El(T, τ) = El(t(θ ∗ U), τ(θ)) = El(t(x), τ(Θx)) = ρx (3)

which equals Bayes posterior risk from this right invariant prior, where Θx ∼ posterior of
θ given data x

Example 2.1 x1, ..., xn
i.i.d.∼ N (θ, σ2) where θ + z ∗ σi. Can also be formulated as x̄ =

τ + σ ∗ z̄, ai = xi − x̄.
We need to condition z̄ by ai: z̄|a ∼ z̄ from Basu.

Example 2.2 (More general) x = θ − u where u is a known distribution
Θx = x + U ∼ Bayes posterior. Then we need to calculate the loss and the risk.
l = |s| + λ(θ /∈ s)
ρx = |s| + λ ∗ P (x + U /∈ s)
s(x) = x + s(0) by assumtion, s(0) = [t1, t2]
t2 − t1 + λ ∗ P (U /∈ [t1, t2] = t2 − t1 + λ ∗ [F (t1) + (1 − F (t2))]
Minimize: U ∼ f = F ′ gives us two equations with two unknowns:
0 = ∂1[t2 − t1 + λ ∗ [F (t1) + (1 − F (t2))]] = −1 + λ ∗ f(t1)
0 = ∂2[t2 − t1 + λ ∗ [F (t1) + (1 − F (t2))]] = 1 − λ ∗ f(t2)
0 = λ ∗ (f(t1) − f(t2) ⇒ f(t1) = f(t2) = 1/λ
The level is 1 − α where
α = P (θ /∈ S) = P (θ /∈ (X + [t1, t2])) = P (U /∈ [t1, t2])
Note: Minimizing ρx gives also the minimal size |s| under the constraint
Px(Θx ∈ s) ≥ 1 − α
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To summarize the methods:

(1) Invert likelihood test

(2) Optimal equivariant from Bayes posterior risk

(3) Pivotal quantity (x = θ − u ⇔ x − θ = −u is pivotal)

Definition 2.3 (Pivotal point) A pivotal point Q = Q(X, θ) has a known
distribution, where X is the data and θ is the model

Example 2.3 (x̄ − µ)/s is a pivot in xi = µ + σ ∗ zi ⇒ θ = (µ, σ)

Example 2.4 (Standard example) x̄ ± ku is a 1 − α confidence interval for µ given, and
xi ∼ N(µ, σ2) where k = tα/2,n−1, σ unknown.
k = zα/2, σ known
ku = expanded uncertainty

u =


s√
n

σ is unknown
σ√
n

σ is known
where u = standard uncertainty and k = coverage factor

(
x̄−µ

u

)
∼

t(n−1) when σ is unknown
N (0, 1) when σ is known
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