

Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4295 Statistical

inference Lecturer Fall 2023: *Gunnar Taraldsen*

Scribes: Katrine Talmo

Lecture 2 in week 42: Interval and set estimation

Contents

1 Interval/set estimation	2
Definitions	5
Theorems	5
Examples	5
Index	6

1 Interval/set estimation

Definition 1.1 (Interval estimation) An interval estimator is an interval-valued estimator.

Example 1.1 Bayes credibility interval

An interval with posterior probability $\geq 1 - \alpha$ (95%)

 $P(\tau(\theta) \in \hat{\tau}(x) \,|\, X = x) \ge 1 - \alpha$

 $\hat{\tau} = [\hat{\tau}_1, \hat{\tau}_2]$ where $\hat{\tau}_1$ and $\hat{\tau}_2$ are real valued statistics.

Example 1.2 Confidence interval with level $1 - \alpha$

 $P(\tau \in \hat{\tau}(X)) \ge 1 - \alpha$, where $P(\tau \in \hat{\tau}(X))$ is the coverage probability (parameter)

Example 1.3 Prediction interval with level $1 - \alpha$

 $P(T \in \hat{\tau}(X)) \geq 1 - \alpha$, where T is a random point and $\hat{\tau}(X)$ is a random interval.

(T,X) has known distribution when θ is known.

What is a best/optimal intervall?

Loss function: $l = |\hat{\tau}| + \lambda(\tau \notin \hat{\tau})$ where $\lambda > 0$ (Lagrange multip.)

Clases of set estimators:

- Unbiased: Coverage probability of true-value is always larger then coverage probability of false value.
- Equivariance: $\hat{\tau}(gx) = g\hat{\tau}(x)$ $[g\hat{\tau} = \{gt \mid t \in \hat{\tau}\}]$ $\hat{\tau}(x+a) = a + \hat{\tau}(x)$ Testing: $l = \tau(1-t) + \lambda(1-\tau)t$ is similar to above loss

 $\rho = E[l(\hat{\tau}(X),\tau)] \leq \rho' \Leftrightarrow \hat{\tau}$ is better than $\hat{\tau}'$

Theorem 1.1 (Kolmogorov-Robbins Theorem) $(a, w) \mapsto (a \in A(w))$ is measurable. E $(\mu(A))$ = Expected size of random set A = $\int P(a \in A)\mu(da)$, where $P(a \in A)$ is the hitting probability

Proof:

$$\begin{split} \mathbf{R}.\mathbf{H} &= \int [\int (\mathbf{a}) \in A(w)) P(dw)] \mu(du) \\ &= \int [\int (\mathbf{a}) \in A(w)) \mu(da)] P(dw) \\ &= \int \mu(A, w) P(dw) \\ &= \mathbf{E} \ \mu(A) \ \Box \\ \\ \rho &= E \ \mu(\hat{\tau}(X)) + \lambda P(\tau \notin \hat{\tau}(X)) \ , \ \text{where} \ P(\tau \notin \hat{\tau}(X)) = \alpha \\ &= \int P(t \in \hat{\tau}(X) \mu(dt)) + \lambda \alpha \ \text{Assume that} \ \mu\{\tau\} = 0 \end{split}$$

= $\int_{t \neq \tau} P(t \in \hat{\tau}(X)) \mu(dt) + \lambda \alpha$ gives:

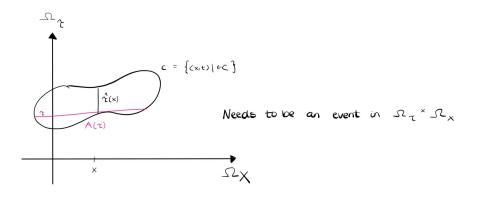
Theorem 1.2 (Ghosh-Pratt Theorem) A uniformly most powerfull set of a given level $1 - \alpha$ is optimal.

(The opposite is not true!)

Claim : There exists confidence sets in the class of level $1 - \alpha$ with smallest expected size without being UMP.

UMP: uniformly most powerfull.

Inversion of tests:



 $\hat{\tau}(x) = \{ \tau \mid (x, \tau) \in C \}$ = Confidence set $A(\tau) = \{ x \mid (x, \tau) \in C \}$ = Acceptance region

Theorem 1.3 (Test Inversion) $\hat{\tau}(X)$ is $1 - \alpha$ confidence set if and only if $A(\tau_0)^c$ is a α level test of $H_0: \tau = \hat{\tau}$

Definitions

1	Interval estimation	. 2
Tł	eorems	
1	Kolmogorov-Robbins Theorem	. 3

1	Round Port in the point in corem	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
2	Ghosh-Pratt Theorem								•															3
3	Test Inversion	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4

Examples

Index

Interval estimation, 2