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Lecture 1 in week 42: ’Hypothesis Testing’

1 From last time

Firstly we recall from last time about hypothesis testing:

Definition 1.1 (Test) A test is a {0, 1} valued statistic.

Definition 1.2 (Hypothesis) A hypothesis is a {0, 1} parameter.

Loss function for tests:
l = τ(1 − t) + (1 − τ)tw

Where l is loss, τ is hypothesis, t is test, w is some (typical large) weight. Power of test T:

β = E(T )

This is parameter: β = β(θ). β ≤ α on H0 (which defines α)

β is power function. All information about test is in β. If we want to calculate the risk:

ρ = E(l(τ, T )) = τ(1 − β) + (1 − τ)βw

then the problem of minimizing the risk comes down to maximize β.

Neymann-Pearson test - randomized test for two models. Gives Karlin-Rubin thm. Suffi-
ciency and MLR is key. MLR implies monotonic power function which means that:

T0 ≺ T1

, for θ1 ≤ θ0

Definition 1.3 (stochastic order) A random variable is stochastic larger (or
smaller) than other random variable if and only if it’s cdf (or cmf) is larger or
equal than other. In other words:

X1 ≺ X2 ⇔ F1 ≥ F2
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Lecture 1 in week 42: ’Hypothesis Testing’

Figure 1: Graph for Definition 1.3

Theorem 1.1 (stochastic order) X1 ≺ X2 ⇔ ∃x̃i ∼ Xi ∼ xi, X̃1 ≤ X̃2

Proof. (how we should construct x̃2)

x̃i = F −1
i (U) ∼ xi, where U ∼ U(0, 1). This implies that x̃1 ≤ x̃2 because of CDF.

Reminder that: X ≤ Y means X(ω) ≤ Y (ω)∀ω

2 How to define inverse of CDF if CDF is not monotonical

F −1
− (u) = inf{x|u ≤ F (x)}

Note: we could also write above F −1(ω) = min(x|u ≤ F (x))

F −1
+ (u) = sup{x|F (x) ≤ u}

F −1(u) = pF −1
− (u) + qF −1

+ (u)

X ∼ F
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Lecture 1 in week 42: ’Hypothesis Testing’

Where p + q = 1. In any case X ∼ F −1(U), U ∼ U(0, 1).

Theorem 2.1 (consequence of theorem 1.1) F (X) ≻ U(0, 1) when F is the
CDF of X.

Proof.
F (F −1(U)) ≥ U

F (F −1(u)) ≥ u

3 Reject an unlikely hypothesis!

Let
t = (λ(x) ≤ λα)

Where t is the test, x is data, λ(·) is likelihood of hypothesis, λ(x) = L̂0
L̂

, L̂0 is sup{L}
given H0 and L̂ is sup{L}.

p value corresponding to this is by definition:

Definition 3.1 (p-value of a likelihood test)

p(x) = sup
H0

P (λ(X) ≤ λ(x))

Theorem 3.1 (this p is a p-value statistic.)

Proof. T 2.1
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Lecture 1 in week 42: ’Hypothesis Testing’

4 Fisher solution

Lets consider a conditional test given by conditioning on a statistic which is sufficient given
H0.

Fisher:
S = X1 + X2

H0∼ B(n1 + n2, pi)

Where Xi ∼ B(ni, pi).

X1|S has a known distribution. The question is: what is reasonable rejection boundary?
One answer to this question is to reject if X1 is large.

p(x) = p(s, x1) = P (X1 ≥ x1|S = s)

P (p(X) ≤ α|S = s) ≤ α

E(P (p(X) ≤ α|S = s) ≤ α) ≤ α

So, p is a p-value statistic.

5 Solution using exponential families

Let
f(x) = h(x)eθt−γ

Lets consider H0 such that:
H0 : θ1 = θ∗

1

H1 : θ1 ̸= θ∗
1

Where θ∗
1 is some fixed value. θ2 is nuisance here.

θ = (θ1, θ2)

Solution:

Condition on S = T2, then X|S is known under H0. Conditional p-value for this problem:
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Lecture 1 in week 42: ’Hypothesis Testing’

p(x) = p(t1, t2), P (p(T1, t2) ≤ α|t2) ≤ α

β ≤ β0

P (p(x) ≤ α) = E(P (p(T1, T2) ≤ α|T2))

The role of condition here is that point H0 is controlled conditionally.

Example 5.1 (Exponential distribution) Let x1, x2, . . . , xn ∼ Exp(β). The likelihood
then is:

L =
n∏

i=1

1
β

e− xi
β = β−ne−n x

β

By sufficiency principle all inference can be made based on x, so:

x = βu, ui ∼ Exp(1)

.

The above is data generating equation. The u here is Γ(n, 1/n).

Let’s calculate likelihood ratio. Let:

H0 : β ≤ β0

H1 : β > β0

then λ = L0
L̂

= . . ., which is possible to compute, but we can use Karlin-Rubin which is
simpler because we have 1 parameter.

We consider L1
L0

which is increasing in x when β1 > β0

Exp(β1) > Exp(β2)

if β2 ≥ β1

e
−nx( 1

β1
− 1

β0
) is increasing as a function of x.

Optimal test:
t = (x > xα)

The next question is: how to get xα?
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Lecture 1 in week 42: ’Hypothesis Testing’

α = P (X > xα)

Where xα is critical value for Γ(n, β0
n

). If we find xα, then we have optimal test.

Observation: We can use tables for χ2!

Best solution: p = P0(X > x) = {using χ2} = . . .

Example 5.2 (Two sided case) Let:

H0 : β = β0

H1 : β ̸= β0

Then we don’t have Karlin-Rubin.

Solution: We have to calculate λ(x), and then p.
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