

Contents

1	From last time	2
2	How to define inverse of CDF if CDF is not monotonical	3
3	Reject an unlikely hypothesis!	4
4	Fisher solution	5
5	Solution using exponential families	5
De	finitions	8
Th	eorems	8
Ex	amples	8
Index		9

1 From last time

Firstly we recall from last time about hypothesis testing:

Definition 1.1 (Test) A test is a $\{0, 1\}$ valued statistic.

Definition 1.2 (Hypothesis) A hypothesis is a $\{0, 1\}$ parameter.

Loss function for tests:

$$l = \tau(1-t) + (1-\tau)tw$$

Where l is loss, τ is hypothesis, t is test, w is some (typical large) weight. Power of test T:

$$\beta = E(T)$$

This is parameter: $\beta = \beta(\theta)$. $\beta \le \alpha$ on H_0 (which defines α)

 β is power function. All information about test is in β . If we want to calculate the risk:

$$\rho = E(l(\tau, T)) = \tau(1 - \beta) + (1 - \tau)\beta w$$

then the problem of minimizing the risk comes down to maximize β .

Neymann-Pearson test - randomized test for two models. Gives Karlin-Rubin thm. Sufficiency and MLR is key. MLR implies monotonic power function which means that:

$$T_0 \prec T_1$$

, for $\theta_1 \leq \theta_0$

Definition 1.3 (stochastic order) A random variable is stochastic larger (or smaller) than other random variable if and only if it's cdf (or cmf) is larger or equal than other. In other words:

$$X_1 \prec X_2 \Leftrightarrow F_1 \ge F_2$$

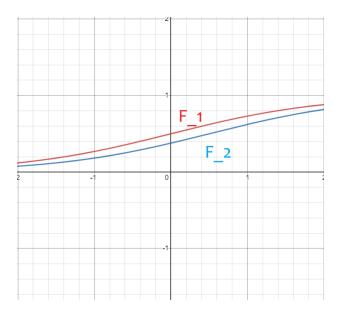


Figure 1: Graph for Definition 1.3

Theorem 1.1 (stochastic order) $X_1 \prec X_2 \Leftrightarrow \exists \widetilde{x}_i \sim X_i \sim x_i, \widetilde{X}_1 \leq \widetilde{X}_2$

Proof. (how we should construct \tilde{x}_2)

 $\tilde{x}_i = F_i^{-1}(U) \sim x_i$, where $U \sim U(0, 1)$. This implies that $\tilde{x}_1 \leq \tilde{x}_2$ because of CDF. Reminder that: $X \leq Y$ means $X(\omega) \leq Y(\omega) \forall \omega$

2 How to define inverse of CDF if CDF is not monotonical

$$F_{-}^{-1}(u) = inf\{x | u \le F(x)\}$$

Note: we could also write above $F^{-1}(\omega) = \min(x|u \leq F(x))$

$$F_{+}^{-1}(u) = \sup\{x | F(x) \le u\}$$

$$F^{-1}(u) = pF_{-}^{-1}(u) + qF_{+}^{-1}(u)$$

 $X \sim F$

Where p + q = 1. In any case $X \sim F^{-1}(U), U \sim U(0, 1)$.

Theorem 2.1 (consequence of theorem 1.1) $F(X) \succ U(0,1)$ when F is the CDF of X.

Proof.

$$F(F^{-1}(U)) \ge U$$
$$F(F^{-1}(u)) \ge u$$

3 Reject an unlikely hypothesis!

Let

$$t = (\lambda(x) \le \lambda_{\alpha})$$

Where t is the test, x is data, $\lambda(\cdot)$ is likelihood of hypothesis, $\lambda(x) = \frac{\hat{L}_0}{\hat{L}}$, \hat{L}_0 is $\sup\{L\}$ given H_0 and \hat{L} is $\sup\{L\}$.

p value corresponding to this is by definition:

Definition 3.1 (p-value of a likelihood test)

$$p(x) = \sup_{H_0} P(\lambda(X) \le \lambda(x))$$

Theorem 3.1 (this p is a p-value statistic.)

Proof. T 2.1

4 Fisher solution

Lets consider a conditional test given by conditioning on a statistic which is sufficient given H_0 .

Fisher:

$$S = X_1 + X_2 \stackrel{H_0}{\sim} B(n_1 + n_2, p_i)$$

Where $X_i \sim B(n_i, p_i)$.

 $X_1|S$ has a known distribution. The question is: what is reasonable rejection boundary? One answer to this question is to reject if X_1 is large.

$$p(x) = p(s, x_1) = P(X_1 \ge x_1 | S = s)$$
$$P(p(X) \le \alpha | S = s) \le \alpha$$
$$E(P(p(X) \le \alpha | S = s) \le \alpha) \le \alpha$$

So, p is a p-value statistic.

5 Solution using exponential families

Let

$$f(x) = h(x)e^{\theta t - \gamma}$$

Lets consider H_0 such that:

$$H_0: \theta_1 = \theta_1^*$$
$$H_1: \theta_1 \neq \theta_1^*$$

Where θ_1^* is some fixed value. θ_2 is nuisance here.

$$\theta = (\theta_1, \theta_2)$$

Solution:

Condition on $S = T_2$, then X|S is known under H_0 . Conditional p-value for this problem:

$$p(x) = p(t_1, t_2), P(p(T_1, t_2) \le \alpha | t_2) \le \alpha$$
$$\beta \le \beta_0$$
$$P(p(x) \le \alpha) = E(P(p(T_1, T_2) \le \alpha | T_2))$$

The role of condition here is that point H_0 is controlled conditionally.

Example 5.1 (Exponential distribution) Let $x_1, x_2, \ldots, x_n \sim Exp(\beta)$. The likelihood then is:

$$L = \prod_{i=1}^{n} \frac{1}{\beta} e^{-\frac{x_i}{\beta}} = \beta^{-n} e^{-n\frac{\overline{\alpha}}{\beta}}$$

By sufficiency principle all inference can be made based on \overline{x} , so:

$$\overline{x} = \beta \overline{u}, u_i \sim Exp(1)$$

The above is data generating equation. The \overline{u} here is $\Gamma(n, 1/n)$.

Let's calculate likelihood ratio. Let:

$$H_0: \beta \le \beta_0$$
$$H_1: \beta > \beta_0$$

then $\lambda = \frac{L_0}{\hat{L}} = \dots$, which is possible to compute, but we can use Karlin-Rubin which is simpler because we have 1 parameter.

We consider $\frac{L_1}{L_0}$ which is increasing in \overline{x} when $\beta_1 > \beta_0$

$$Exp(\beta_1) > Exp(\beta_2)$$

if $\beta_2 \ge \beta_1$

 $e^{-n\overline{x}(\frac{1}{\beta_1}-\frac{1}{\beta_0})}$ is increasing as a function of $\overline{x}.$

Optimal test:

$$t = (\overline{x} > x_{\alpha})$$

The next question is: how to get x_{α} ?

$$\alpha = P(\overline{X} > x_{\alpha})$$

Where x_{α} is critical value for $\Gamma(n, \frac{\beta_0}{n})$. If we find x_{α} , then we have optimal test.

Observation: We can use tables for χ^2 !

Best solution: $p = P_0(\overline{X} > \overline{x}) = \{\text{using } \chi^2\} = \dots$

Example 5.2 (Two sided case) Let:

$$H_0: \beta = \beta_0$$
$$H_1: \beta \neq \beta_0$$

Then we don't have Karlin-Rubin.

Solution: We have to calculate $\lambda(x)$, and then p.

Definitions

1	Test
2	Hypothesis
3	stochastic order
4	p-value of a likelihood test

Theorems

1	stochastic order	•				•									•										•	3
2	consequence of theorem 1.1			•																						4
3	this p is a p-value statistic.	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	4

Examples

1	Exponential distribution	6
2	Two sided case	7

Index

Hypothesis, **2** p-value of a likelihood test, **4** stochastic order, 2

Test, **2**