Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4295 Statistical inference

Lecturer Fall 2023: Gunnar Taraldsen

Scribe: Cassandra Jan

Lecture 1 in week 41: 'Hypothesis Testing'

Contents

1	Basic concepts	2
2	Work with hypothesis testing	3
3	Different possible tests	4
De	finitions	5
Th	eorems	5
Ex	amples	5
Inc	dex	6

1 Basic concepts

Definition 1.1 (Hypothesis) A hypothesis is an event in the model space.

A hypothesis is an indicator of the model, so it is a parameter.

Definition 1.2 (Test) A test is a statistic with Bernoulli distribution.

Definition 1.3 (Power of a test) The power of a test T is defined as : $\beta = \mathbb{E}[T]$

In the definition, β is a function of θ . It represents the probability of rejection of H_0 . It is a parameter.

<u>Note</u> : τ is a 0-1 value parameter and T is a 0-1 valued estimator.

 $\tau(\theta) = (\theta \in H1)$ where $\Omega_{\theta} = H_0 \cup H_1$, with $H_1 = H_0^c$ and $H_0 =$ Null hypothesis.

So for example if we have H_0 : $\theta = \theta_0$ and H_1 : $\theta \neq \theta_0$, Then $H_0 = \{\theta | \theta = \theta_0\} = \{\theta_0\}.$

Likewise in the case of a normal distribution if we have: H_0 : $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$, Then $H_0 = \{(\mu, \sigma) | \mu = \mu_0\}$.

Definition 1.4 (Level of a test) T has level α if $\beta \leq \alpha$ for $\theta \in H_0$.

Saying that T is an α -size test means that:

$$\sup_{\theta \in H_0} \beta(\theta) = \alpha$$

Therefore, we compare tests by comparing power function. Risk (which represent the expected loss) is given uniquely by power function. You know the distribution of T if you know the power function.

2 Work with hypothesis testing

Definition 2.1 (Likelihood of a hypothesis) The likelihood of H_0 is : $\lambda(x) = \frac{sup_{H_0}L}{supL}$

where L is the likelihood and x is the data.

We often have : $\sup_{H_0} L = L(\hat{\theta}_0)$ and $\sup_{h_0} L = L(\hat{\theta})$ where $L(\hat{\theta}_0)$ represent the maximum likelihood function given that we have H_0 .

By definition, if λ is small we reject H₀.

Definition 2.2 (Likelihood of a test) It is defined by : $t = (\lambda \le \lambda_0)$ where λ is a statistic.

The size of the test is

$$\alpha = \sup_{\theta \in H_0} \ \beta(\theta) = \sup P(\lambda(X) \le \lambda_{\alpha})$$

VERY IMPORTANT NOTION : We reject an unlikely hypothesis

Definition 2.3 (Randomized test)	A randomized test T is a statistic with
($0 \le T \le 1.$

Theorem 2.1 (Neymann-Pearson) The theorem is illustrated by the following figure.

Figure 1: Neymann-Pearson optimal test R

Here k gives the level and defines R. The test R is optimal in the class of randomized test with level $\alpha = \beta_0 = E_0(R)$.

<u>Note</u> : We have $\beta_1 \ge \widetilde{\beta_1}$ (for all \widetilde{R} test with $E_0 \widetilde{R} \le \alpha$) and $\beta_0 \le \beta_1$ is a consequence.

 $\underline{\operatorname{Proof}}: (\operatorname{R-}\widetilde{R})(f_1 - k.f_0) \ge 0.$

(Remark : if you integrate it, you still get something positive).

And then $\beta_1 \ge \widetilde{\beta_1} + k \cdot (\beta_0 - \widetilde{\beta_0}) \ge \widetilde{\beta_1}$

3 Different possible tests

(i) Likelihood test (often better than (ii))

(ii) "Bayes" Rejected if the posterior probability of H_0 is small.

(iii) $H_0: \tau = \tau_0$ (here : τ is a function of θ); $H_1: \tau \neq \tau_0$ We reject if T is far from τ_0 with T the estimator of τ . (It will depend on standard uncertainty). This test is intuitively what we would do.

<u>Remark</u> : "Optimal" means "uniformely larger powered in class of tests with level α ".

Definitions

Hypothesis
Test
Power of a test
Level of a test
Likelihood of a hypothesis
Likelihood of a test
Randomized test

Theorems

1	Neymann-Pearson				•			•	•	•		•	•	•	•				•		•	•	•	•	•		•		•			•	3	
1	Neymann-Fearson	·	·	·	•	·	·	·	·	•	·	·	•	•	·	·	•	·	·	·	·	•	·	·	·	·	•	·	·	·	·	·	Э	

Examples

Index

 ${\rm Hypothesis},\, {\bf 2}$

Level of a test, 2Likelihood of a hypothesis, 3Likelihood of a test, 3 Power of a test, **2** Randomized test, **3** Test, **2**