TMA4295 Statistical inference
 Lecturer Fall 2023: Gunnar Taraldsen

Norwegian University of Science and Technology

Scribe: Solène Couchot and Yawar
Department of Mathematical
Mahmood
Sciences
Lecture 1 in week 39:
'Bayesian estimates'

Contents

1 Bayesian point estimate with a group structure 2
2 Conjugate families 4
Definitions 7
Theorems 7
Examples 7
Index 8

1 Bayesian point estimate with a group structure

We assume model space Ω_{Θ} is a group.

$$
\text { Definition } 1.1 \text { (Right invariant prior) } \quad P_{\Theta u}=P_{\Theta} \text { in the sense that } \Theta u \sim \Theta
$$

Example 1.1 $\pi(\theta)=\frac{1}{\theta} d \theta$ with multiplication as group operation.

Example 1.2 $\pi(\theta)=1$ with addition as group operation.

Example 1.3 $\pi(\mu, \sigma)=\frac{1}{\sigma} d \mu d \sigma$ is right invariant for the location scale group.

Example 1.4 (Location Scale) If $\theta=(\mu, \sigma), u=\left(\bar{Z}, S_{Z}\right)$
We get $\theta u=\left(\bar{X}=\mu+\sigma \bar{Z}, S=\sigma S_{Z}\right)$

Theorem 1.1 (Fiducial posterity) Let $X=\theta u, a$ be the data. Then

$$
\left(\Theta=x U^{-1} \mid A=a\right) \sim \Theta \mid(x, a)
$$

starting with a right invariant prior.

Proof. Let ϕ and ψ be two functions.
Want to show that:

$$
E[\phi(X, A) \psi(\Theta)]
$$

is equal to, and can be written as:

$$
E[\phi(X, A) E[\psi(\Theta) \mid(X, A)]]
$$

Start by writing the integral form of the expectation value:

$$
\iiint \phi(\theta u, a) \psi(\theta) P_{\Theta u}(d \theta) P_{U}^{a}(d u) P_{A}(d a)
$$

Lets do a change of variable. From our theorem, note $\theta u=x$:

$$
\iiint \phi(x, a) \psi\left(x u^{-1}\right) P_{\Theta u}(d x) P_{U}^{a}(d u) P_{A}(d a)
$$

Because of right invariance, $P_{\Theta u}$ does not depend on u. Hence:

$$
\iint \phi(x, a)\left[\int \psi\left(x u^{-1}\right) P_{U}^{a}(d u)\right] P_{\Theta}(d x) P_{A}(d a)
$$

Note that $P_{\Theta}(d x) P_{A}(d a)$ is the joint distribution of (x, a) and that $\left[\int \psi\left(x u^{-1}\right) P_{U}^{a}(d u)\right]$ is equal to $E[\psi(\Theta) \mid(x, a)]$ Since:

$$
E[\phi(X, A) \psi(\Theta)]=E[\phi(X, A) E[\psi(\Theta) \mid(X, A)]]
$$

Theorem 1.2 (Right Invariant Prior and optimal equivariant estimator) The right invariant prior (if it exists) determines an optimal equivariant estimator given an invariant loss

Proof. The risk ρ :

$$
\rho=E[l(t(\theta U, A), \theta)]
$$

where l is the loss function and $t(\theta U, A)$ is equivariant.

$$
E[l(\theta t(U, A), \theta)]
$$

The expression does not depend on θ, since l is invariant. We can write this as an double expectation:

$$
E\left[E\left[l\left(t(x, A), x U^{-1}\right) \mid A\right]\right]
$$

Here $p^{x, a}=\left.E(l(t(X, A), \Theta))\right|_{x, a}$ is the Bayes post risk.
If we take the conditional on $A=a$, we can write $E\left[l\left(t(x, A), x U^{-1}\right) \mid A\right]$ as an integral.

Furthermore, regarding the previously proof, it is important to observe that we can argue that the double expectation mentioned does not rely on the variable x either, since the initial expectation is not dependent upon the parameter θ.

Example 1.5 (Location-Scale) $\quad \theta=(\mu, \sigma)=(x, a), u=\left(\left(\bar{Z}, S_{Z}\right)\right)$

Define $\bar{x}=\mu+\sigma \bar{z}, S^{2}=\sigma^{2} S_{z}^{2}$
Note, to keep location scale we should have defined $S=\sigma S_{z}$, but we are not to worried about that here. Solving to find Fiducial (posterior!).
Define precision: $\lambda=\sigma^{-2}$. Hence, $S^{2}=\lambda^{-1} S_{z}^{2}$
Solving for $\lambda, \lambda=\frac{S_{z}^{2}}{S^{2}} \sim \operatorname{Gamma}(\alpha, \beta)$
Also: $(\mu=\bar{x}-\sigma \bar{z} \mid \lambda) \sim N(\bar{x}, \cdot)$

2 Conjugate families

Definition 2.1 (Conjugate family of priors) A family of priors is a conjugate family if any conjugate prior gives a posterior in the conjugate family

Example 2.1 (Beta family) $\quad f(x)=p^{x}(1-p)^{1-x} \sim B(p)(x \in\{0,1\})$
Prior with $\operatorname{Beta}(\alpha, \beta)$ distribution : $\pi(p) \propto p^{\alpha-1}(1-p)^{\beta-1}$
Thus

$$
\pi(p \mid x) \propto p^{\alpha+x-1}(1-p)^{\beta+y-1} \sim \operatorname{Beta}(\alpha+x, \beta+y)
$$

(where $y=1-x$)
$\operatorname{Beta}(\alpha, \beta)$ is a conjugate prior family for $B(p)$.
$\operatorname{Beta}\left(\alpha+x_{1}+x_{2}, \beta+y_{1}+y_{2}\right)$ is the posterior from a new $B(p)$ using the previous posterior as its prior.

Example 2.2 (Exponential family) We once again consider the example above, but this time with an exponential family.
$f(x)=p^{x}(1-p)^{1-x} \sim B(p)(x \in\{0,1\})$
Thus,

$$
f(x)=e^{x \ln (p)+(1-x) \ln (1-p)}=e^{x \cdot \eta-\gamma}
$$

With $\eta=\ln \frac{p}{1-p}$ and $\gamma=-\ln (1-p)$
We have $\gamma \in(\mathbb{R},+)$ a group.
If $\alpha=0=\beta$, then $\operatorname{Beta}(0,0) \sim p \Longleftrightarrow \gamma \sim U(-\infty,+\infty)$: length is invariant with respect to shift!

Note that conjugate families are not unique. They depend on the choice of a reference measure on $R(\Theta)$.
Example 2.3 (Beta family) Beta case follows by starting with $\operatorname{Beta}(0,0)$ as reference: $\mu(d p)=\pi(p) d p=p^{-1}(1-p)^{-1} d p$

Example 2.4 (Location-Scale) $\quad m(d \mu, s \sigma)=\frac{1}{\sigma} d \sigma d \mu$

Now, lets look at the exponential family on canonical form:

$$
g(x) e^{x \theta-\gamma}
$$

where $\gamma=\gamma(\theta)$.
We know that:

$$
1=\int g(x) e^{x \theta-\gamma} \mu(d x)
$$

Hence:

$$
e^{\gamma}=\int g(x) e^{x \theta} \mu(d x)
$$

where x and θ do not need to be real numbers.
Considering a normal distribution with parameters μ and σ^{2} :

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\ln (\sigma)+\frac{-x^{2}+2 \mu x-\mu^{2}}{2 \sigma^{2}}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{\left[-x^{2}, x\right] \cdot\left[\frac{1}{2 \sigma^{2}}, \frac{\mu}{\sigma^{2}}\right]-\left(\ln (\sigma)+\frac{\mu^{2}}{2 \sigma^{2}}\right)}
\end{aligned}
$$

Here we can see that the canonical statistic is $\left[-x^{2}, x\right]$, the canonical parameter $\theta=\left[\frac{1}{2 \sigma^{2}}, \frac{\mu}{\sigma^{2}}\right]$ and $\gamma=\left(\ln (\sigma)+\frac{\mu^{2}}{2 \sigma^{2}}\right)$. This is indeed a part of the exponential family.

For this case, $E[X]=\gamma^{\prime}$. The MLE of $\hat{\theta}$ is determined by $x=\gamma^{\prime}(\hat{\theta})$. If γ is convex, we also know that $\gamma^{\prime \prime} \geq 0$.

For the prior density : $e^{a \theta-b \gamma}$ with a and b constants:
The posterior density is: $\pi(\theta \mid x) \propto e^{(a+x) \theta-(b+1) \gamma}$

Definitions

1 Right invariant prior 2
2 Group model 2
3 Conjugate family of priors 4
Theorems
1 Fiducial posterity 2
2 Right Invariant Prior and optimal equivariant estimator 3
Examples
1 2
2 2
3 2
4 Location Scale 2
5 Location-Scale 4
6 Beta family 4
7 Exponential family 4
8 Beta family 5
9 Location-Scale 5

Index

Conjugate family of priors, 4
Right invariant prior, 2
Group model, 2

