

Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4295 Statistical

inference Lecturer Fall 2023: Gunnar Taraldsen

Scribe: Viktor Sandve and

Lecture 1 in week 35: 'Sufficiency Introduction'

Contents

1 Probability Theory Repetition	2
2 Sufficiency	3
Definitions	4
Theorems	4
Examples	4
Index	

1 Probability Theory Repetition

The lecture began with some repetition of fundamental concepts and definitions of probability theory.

Definition 1.1 (Statistic) A statistic is a function of data.

Definition 1.2 (Random variable) A random point X is a function from a sample space Ω to a sample space Ω_X

For this definition to make sense we also need the definition of a sample space and events:

Definition 1.3 (Event) An event is a measurable set.

Definition 1.4 (Sample space) A sample space S is a set equipped with a family \mathcal{F} of events. \mathcal{F} is a non-empty collection of subsets of S, closed under complements and countable unions.

•
$$\emptyset \neq \mathcal{F} \subset \{A | A \subset S\}$$

•
$$A \in \mathcal{F} \implies A^c \in \mathcal{F}$$

• $A_1, A_2... \in \mathcal{F} \implies \bigcup_{i=1}^n A_i \in \mathcal{F}$

The probability of an outcome A is denoted $P_X(A) = P(X \in A) = P\{\omega | X(\omega) \in A\}$ where $\omega \in \Omega$. P_X is known when the model θ is known. In the real world this is usually not the case.

Example 1.1 (Not all sets are events!) Let X be a simple function from the sample space to some general space: $X : S \to \mathcal{X}$. We have $R(X) = \{X_1, ..., X_n\}$. A simple function gives a partition into sets $A_i, i = 1...n$, where $A_i = (X = x_i) = \{s | X(s) = x_i\} \subset S$ Then $\mathcal{F} = \{A | A = \bigcup_{i \in J} A_i, J \subset \{1...n\}\}$ is a family of events. Any non-empty proper subset of any A_i is not an event.

2 Sufficiency

Intuitively a statistic is sufficient if it contains all relevant information. The formal definition is:

Definition 2.1 (Sufficient statistic) A statistic T is sufficient if the conditional distribution X|T = t is known.

Meaning it is the same for all $theta \in R(\theta)$.

The following theorem can be used to calculate sufficient statistics.

Theorem 2.1 (Factorization theorem for sufficiency) Let f be the density of the data y and let t = t(y) be a statistic. The statistic t is sufficient iff $f(y | \theta) = g(y)h(t | \theta)$ where θ is the model parameter. Furthermore, g is the conditional density of the data given t, and h is the density of t.

Another theorem to identify a sufficient statistic is.

Theorem 2.2 () A statistic t is sufficient if $\frac{f_X(X|\theta)}{f_T(t|\theta)}$ does not depend on θ .

Example 2.1 (Sufficiency) Let $X_1...X_n$ have distribution $f(x) = \prod_{i=1}^n \frac{(0 < X_i < \theta)}{\theta}$ then $f(x) = \theta^{-n} \cdot (0 < X_{(n)} < \theta) = g(x) \cdot h(t|\theta), t = X_{(n)}$

This means the order statistic $X_{(n)}$ is sufficient.

Definitions

1	Statistic
2	Random variable
3	Event
4	Sample space
5	Sufficient statistic
Ŭ	

Theorems

1	Factorization theorem for sufficiency	3
2		3

Examples

1	Not all sets are events!																					•	2
2	Sufficiency		•	•	•				•	•	 •	•	•	•	•	•	•	•	•	•	•	•	3

Index

Event, 2

Random variable, 2

Sample space, **2** Statistic, **2** Sufficient statistic, **3**