Norwegian University of Science and Technology Department of Mathematical Sciences TMA4295 Statistical inference Fall 2023

Exercise set 5

Read the questions carefully and make your own assumptions if needed.

1 Casella-Berger

(7) 2, 7, 9

2 Empirical distribution and empirical statistics

Let x_1, \ldots, x_n be points in a sample space X.

- a) What are the properties of the family \mathcal{F} of events in X? Is $\{x_1\}$ an event?
- **b**) Fix $x \in X$ and define the Dirac measure δ_x by

$$\mathcal{F} \ni A \mapsto \delta_x(A) = A(x) = 1_A(x) = \chi_A(x) = (x \in A) \tag{1}$$

Explain what this means. Show that δ_x is a probability measure. Let $\Omega \ni \omega \mapsto Y_1(\omega) = x_1$. Prove that Y_1 is a random point and determine P_{Y_1} .

c) The empirical distribution P_n is defined by

$$\mathbf{P}_n = (\delta_{x_1} + \dots + \delta_{x_n})/n \tag{2}$$

Is P_n a probability measure? Let $M \sim U\{1, \ldots, n\}$. Determine the distribution of $Y = x_M$ and the distribution of Y | M = 1. Is (Y = y) an event?

d) Assume $Y_n \sim P_n$. Explain what this means. Prove

$$\mathbf{E}\,\phi(Y_n) = \mathbf{E}_n\,\phi = \int \phi(x)\,\mathbf{P}_n(dx) \tag{3}$$

Is P_n and $E_n \phi$ statistics? What assumptions are needed? Determine $E_n \phi$ using $E(\phi(Y)) = E(E(\phi(Y) | M))$. Is $(Y_n = y)$ an event?

- e) Find formulas for EY_n and $\operatorname{Std} Y_n$ for the case where $X = \mathbb{R}$. Assume that all intervals $(-\infty, x]$ are events. Is $\{x_1\}$ an event? Are the level sets of Y_n events?
- f) Let $(W | M = m) \sim N(x_m, \sigma_m^2)$. Determine the density g_n of W. Determine the CDFs F_n and G_n of Y and W. What happens when $\sigma_m \downarrow 0$? What about $E(\phi(W))$ given that ϕ is continuous? Is $X = \mathbb{R}^k$ meaningful here?
- g) Let $(W | M = m) \sim (x_m + U(-\epsilon_m, \epsilon_m))$. Determine the density g_n of W. Determine the CDFs F_n and G_n of Y and W. What happens when $\epsilon_m \downarrow 0$? What about $E(\phi(W))$ given that ϕ is continuous? Is $X = \mathbb{R}^k$ meaningful here?

3 Completeness and sufficiency in non-parametric statistics

Let x_1, \ldots, x_n be a random sample from a distribution on a sample space X.

- a) Is the empirical distribution P_n a complete minimal sufficient statistic?
- b) The empirical statistic $E_n \phi$ is a uniformly minimal variance unbiased (UMVU) estimate of $E \phi(X_1)$. Why?
- c) Is the loss $l = (t \tau)^2$ convex as a function of t. What about $l = (t \tau)^p$? Is $E_n \phi$ is a uniformly minimal risk unbiased (UMRU) estimate of $E \phi(X_1)$ given a convex loss? Hint: Jensen's inequality.
- d) Assume $X = \mathbb{R}$ and that every interval $(-\infty, x]$ is an event in X. Prove that the sample mean and variance are UMVU estimates of $E X_1$ and $Var X_1$.
- e) Assume $X = \mathbb{R}$ and that every interval $(-\infty, x]$ is an event in X. Assume additionally that $X_1 \sim f(x) dx$ where f is unknown. Are the sample mean and variance UMVU estimates? What additional assumptions are needed? What if the additional assumption is replaced by assuming that f is a density with respect to a measure $\mu = w_1 \delta_{y_1} + w_2 \delta_{y_2} + \cdots$.
- f) Reconsider task e) with the added assumption that $X_1 = \mu + Z_1$ where both μ and the distribution of $Z_1 \sim -Z_1$ is unknown. Prove that the statistical model is invariant with respect to shift transformations. Are the sample mean and variance equivariant?
- g) Reconsider task f) with the added assumption that $Z_1 \sim U(-\frac{1}{2}, \frac{1}{2})$.

4 Estimation in parametric families

Let x_1, \ldots, x_n be a random sample from $f(x) = (x > 0)\beta^{-1}e^{-x/\beta}$ with unknown $\beta > 0$ and a prior $\pi(\beta) = \beta^{-1}$. Let \mathbf{P}_n be the empirical distribution.

- a) Determine the moment- and Bayes-estimates of β .
- **b)** Explain that $E X_1$, $Var X_1$, f(x), f, $F(x) = \int_0^x f(x) dx$, F, and $F^{-1}(q)$ are parameters. Interpretation? What are the corresponding parameter spaces and range of possible parameter values? Find the corresponding maximum likelihood estimates (MLEs).
- c) Show that the statistical model is an exponential family. Determine a natural parameter, a natural statistic T, and its distribution.
- d) Let $Y \sim P_n$. Is Y a statistic? Explain that P_n , EY, VarY, $F_Y(x)$, F_Y , and $F_Y^{-1}(q)$ are estimates. Interpretation? Are they unbiased or equivariant?
- e) Discuss properties of all of the above estimators. Sufficiency principle obeyed? Are they optimal, or can they be used to obtain optimal estimators?
- 5 Casella-Berger

 $(\overline{7})$ 18, 24, 34, 35, 45