Norwegian University of Science and Technology Department of Mathematical Sciences TMA4295 Statistical inference Fall 2023

Exercise set 2

Read the questions carefully and make your own assumptions if needed.

1 Casella-Berger

(6) 1, 7, 8, 9

2 Random vectors

Let X and Y be two random vectors in a finite dimensional vector space V.

- a) Prove that X + Y is a random vector.
- b) What if V is not finite dimensional?

3 Scale Uniform distribution

Let x_1, \ldots, x_n be a random sample from $U(0, \theta)$ (OPEN INTERVAL!).

- a) What is a natural choice for the model space Ω_{Θ} , and the range $R(\Theta)$ of allowed models? Is it necessary that $R(\Theta) = \Omega_{\Theta}$?
- **b**) Explain that the assumption defines a statistical model I and specify every ingredient in the definition.
- c) Is the statistical model from an exponential family?
- d) Show that y = ax is a random sample from $U(0, a\theta)$ (OPEN INTERVAL!). This proves that the statistical model is a group model with respect to the group of transformations on the data space $\Omega_X = \mathbb{R}^n$ given by multiplication by a positive constant a. Explain!
- e) Plot the likelihood function L_I of model I.
- f) Is it true that the MLE does not exist in this case?
- \mathbf{g}) Explain that the graph of the likelihood function is a statistic.
- h) Find a random variable S that is a minimal sufficient statistic. Hint: Any statistic that is in one-one correspondence with the likelihood is a minimal sufficient statistic.
- i) Use the factorisation theorem to prove that both x and s are sufficient statistics.

- j) Consider the statistical model where the observed data is $s = S(\omega)$. Calculate the distribution P_S of S. Explain how this defines a statistical model II.
- k) Illustrate the level sets of s = s(x) in the case n = 2. How are the level sets related to the sufficiency principle in this case? Explain that the level sets define a partition and then also an equivalence relation.
- 1) Calculate the likelihood function L_{II} of the statistical model II. Explain in what sense $L_I = L_{II}$ is true using the language of equivalence relations.
- m) Determine the conditional distribution P_X^s , and illustrate in the case s = 1 and n = 2.
- **n**) Determine $P_{X_1}^s$.
- **o)** Calculate $t = E(X_1 | S = s)$.
- **p)** Is t an unbiased estimate of $\mu = E(X_1)$?
- q) Is t an equivariant estimate of μ ?

4 Location-Scale Uniform distribution

Let x_1, \ldots, x_n be a random sample from $U(\theta_1, \theta_2)$ (OPEN INTERVAL!).

- a) Show that the vector statistic $a = [(x_i \overline{x})/\hat{\sigma}]$ is ancillary. Can the Basu theorem be used to conclude that a is independent of the minimal sufficient statistic $(x_{(1)}, x_{(n)})$?
- b) Reconsider all questions in 3 with suitable adjustments. Hint: It may be helpful to use the coordinates $\mu = (\theta_1 + \theta_2)/2$ and $\beta = (\theta_1 \theta_2)/2$ in the model space.

5 General Scaled Uniform distribution

Let x_1, \ldots, x_n be a random sample from $U(\theta_1, \theta_2)$ (OPEN INTERVAL!). Assume that θ is restricted to be on the curve $\theta(\beta) = \beta(1 - k, 1 + k)$ where the design parameter 0 < k < 1 is known and $\beta > 0$ is unknown.

- a) Illustrate the set $R(\Theta)$ of allowed θ values in the θ plane.
- b) Show that the statistic $a = x_{(1)}/x_{(2)}$ is ancillary. Can the Basu theorem be used to conclude that a is independent of the minimal sufficient statistic $(x_{(1)}, x_{(n)})$?
- c) Reconsider all questions in 3 with suitable adjustments.
- d) Assume that the restriction by the given curve is replaced by the restriction $g(\theta) = 0$. How would you determine the MLE in this case? Consider the special cases $g(\theta) = \overline{\theta} = (\theta_1 + \theta_2)/2$ and $g(\theta) = \widetilde{\theta} = \sqrt{\theta_1 \theta_2}$.

6 Casella-Berger

(6) 10,12,15,23,29,33,34,37