

TMA4295 Statistical inference Fall 2023

Exercise set 1

1 Casella-Berger

(1) 1, 11, 12, 35, 49 (2) 10, 27

2 Random variables

- a) Define the cumulative distribution function F of a random variable X.
- **b)** Let f be a density. Explain what $X \sim f$ means.
- c) Explain what $X \sim N(\mu, \sigma^2)$ means.
- **d)** Prove $E \phi(X) = E_X \phi$ for a simple ϕ .
- e) Prove that the set of random variables is a vector space.

3 Random vectors

Can you generalize and solve the problems in $\boxed{2}$ for the case of random vectors?

4 Conditional distributions in the plane

Let $S = U_1 - U_2$ and $T = U_1/U_2$ where U_1, U_2 is a random sample from U(0, 1).

- a) Illustrate $a = (u_1 \leq \frac{1}{2}), (u_1/u_2 = 1)$, and $(u_1 u_2 = 0)$ in the u_1u_2 -plane.
- **b)** Prove that (S = 0) = (T = 1).
- c) Calculate P(A | S = 0) and P(A | T = 1). Is the result a paradox?

5 \checkmark Level sets and disintegration in the plane.

Let $\mu(dx) = dx_1 dx_2$ be Lebesgue measure in the plane. Define $s(x_1, x_2) = x_1 - x_2$ and $t(x_1, x_2) = x_1/x_2$. Let $\tilde{\mu}_s(ds) = ds$ and $\tilde{\mu}_t(dt) = dt$.

- a) Illustrate the level sets of s and t. Do they give partitions of the plane?
- **b)** Show that $\tilde{\mu}_s$ and $\tilde{\mu}_t$ are pseudo-distributions for s and t.
- c) Find disintegrations $\mu^{s}(dx)\tilde{\mu}_{s}(ds)$ and $\mu^{t}(dx)\tilde{\mu}_{t}(dt)$ of μ .
- **d)** Find $P_X(dx | \mathbf{s}(X) = s)$ and $P_X(dx | \mathbf{t}(X) = s)$ where $X \sim f(x) \mu(dx)$.

6 Gamma distribution

Let the data x_1, \ldots, x_n be a random sample from $G(\alpha, \beta)$.

- a) Explain that this defines a statistical model.
- **b**) Determine the canonical parameter and statistic for this exponential family.
- c) Is the statistical model a group model?
- d) Find a data generating model for the data and for the canonical statistic.
- e) Find a pivotal based on the canonical statistic.
- ${\bf f})~{\rm Is}$ the canonical statistic minimal sufficient? Is it complete?

7 Casella-Berger

(6) 1, 7, 8, 9

Read the questions carefully and make your own assumptions if needed.