
Chapter 1

Discretization of the
computational domain

1.1 Mesh generation

Simplicial meshes

Definition 1.1.1 (Simplicial Mesh). Let Ω be polygonal (d = 2) or polyhedral
(d = 3) subset of Rd, we define the meshM = Th(Ω) obtained by a triangulation
of Ω as a finite family K(M) = {Ki} of disjoints non-empty subsets of Ω named
cells; the topological dimension of the mesh is d and NK(M) = card(K(M))
is the number of cells in the mesh. Moreover V(M) = {vj} denotes the set a
vertices of M, NV(M) is the number of cells in the mesh, and nv(K) = NV(K)

the number of vertices in a cell K.

Whenever there is no possible confusion (only one mesh) notations will be
shortened e.g. K(M) will be only written K, NK (resp. NV) will denote the
number of cells (resp. vertices) inM, and

The topology of a meshM is determined by the relations between elements
of the set of cells K(M) and elements of the set of vertices V(M). The relations
can be expressed in the form of a graph Cd,0(M) =

(
K(M),V(M)

)
called

connectivity. The connectivity between cells and vertices defines the structure of
the mesh and can be represented under the form of a vector of cell connectivities
Cd,0(K1).

Cd,0(M) =


Cd,0(K1)

...
Cd,0(Ki)

...
Cd,0(KN )


Given that the mesh is uniform, any cell K ∈ M contains nv = NV(K)

vertices, so Cd,0(K1) can be represented as a matrix of NNK×nv ; at minima,
distributing the mesh topology consists of partitioning the matrix row-wise.
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Example 1.1.2 (Simplices). Reference triangle and tetrahedron cells are rep-
resented below with locally indexed vertices.

v0 v1

v2

V(K̂) = [v0, v1, v2]

v0 = (0, 0)

v1 = (1, 0)

v2 = (0, 1)

v0 v1

v2

v3

V(K̂) = [v0, v1, v2, v3]

v0 = (0, 0, 0)

v1 = (1, 0, 0)

v2 = (0, 1, 0)

v3 = (0, 0, 1)

The set of vertices V(M) is provided with a set of point coordinates P(M) =
{xj} which define the geometry of the mesh. The position of the vertices in the
geometric space may then change while the topology remains invariant. The
topological dimension of the mesh is not the same as the dimension of geometric
space if the mesh is embbeded in Rn, n > d; this is for example the case of surface
meshes. In general P(M) is then a family of vectors of Rn but usually n = p.

P(M) =


x1
...
xi
...

xN


The geometry can be then represented by a matrix of RNV×n; distributing

the geometry amounts to partition the matrix row-wise.

Generating a mesh consists of the construction of Cd,0(M) and P(M) but
if other entities (edges, faces, . . . ) are needed, then their connectivities can be
created from Cd,0(M) and from the definition of the reference cell type together
with rules for ordering the entities in the mesh.

In the case of vertices, the cell local ordering of connectivities will just be
the natural ordering.
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Example 1.1.3 (Unit square). Generation of a structured triangle mesh with
right-crossed squares.

i i+ 1

i+ ni+ n+ 1

Distribution of entities

Any distribution of a finite set V amounts to partition a subset of N in the
form of a set of global indices I(V) (I defines a global numbering which is a
one-to-one relation by definition), then represent additional relations if entities
have dependencies. It is usually convenient to consider a contiguous numbering
such that I(V) = {1, 2, · · · , NV} but this is not necessarily the case. In the
following the numbering are 1-indexed but the same applies in the case of 0-
indexed numberings.

Considering a partition such that I(V) is a disjoint sum of p index subsets,

I(V) = ∪p
k=1I

k(V), Ii(V) ∩ Ij(V) = ∅

such that in practice any global index only appears once.

For each subset of global indices Ik(V) containing Nk
V entities, a local num-

bering ik(V) defines a mapping from a contiguous numbering of the entities
i = 1, . . . , Nk

V to Ik(V). In practice, Ik(V) may not be ordered, so ik(V) is
merely a numbering of the entities in the order they are iterated over.

If the global numbering is ordered and contiguous, then any subset Ik(V)
can be defined by a range rk with parameters (ok, sk), with

1. the range offset ok is the index of the first global index in the subset,

2. the range size sk is the cardinal of Ik(V).

In a distributed setting the range size is the number of entities owned by the
processor and the offset ok =

∑
i<p si can be computed with a scan reduction.

The global numbering of V is a vector of NNV distributed across processors.

Example 1.1.4. Let us consider the simple example of a set containing 16
entities uniformly partitioned (subsets have the same size) into 4 subsets.

I(V) =
[[

1 2 3 4
][

5 6 7 8
][

9 10 11 12
][

13 14 15 16
]]

then any local numbering will consist of a mapping from [ 1 2 3 4 ] to Ik(V), and
ranges are defined by r1 = (0, 4), r2 = (5, 4), r3 = (9, 4), r4 = (13, 4).



4CHAPTER 1. DISCRETIZATION OF THE COMPUTATIONAL DOMAIN

In a distributed setting, whenever data attached to an entity is required
on more than one processor then the entity is shared between a number of
processors. Given the previous definition of a partitioning, entities can only be
owned by one processor: there cannot be duplicate global indices. If a processor
sees an entity but does not own it, it is called a ghost : the processor can read
its data but is not responsible for computing it. On any processor k the set of
entities V̄k seen by the processor is:

V̄k = Vk + Vk∗

with the local size defined as card(V̄k), Vk the set of owned entities, and Vk∗ the
set of ghost entities. Additionally, the set of shared entities is noted V̂ and has
usually non-empty intersection with Vk and Vk∗ . The set of vertices of a mesh
partition is defined like V̄k.

Whenever data should be shared between processors, sets V̂ and Vk∗ should
be constructed: any elements of Vk∗
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Linear Algebra

Matrix storage

There are two alternatives for storing a matrix A of Rm×n.

Row-major

A =


a11 . . . a1j . . . a1n

ai1 . . . aij . . . ain

am1 . . . amj . . . amn


Flatten into a vector of Rmn:

A =
[[

a11 ... a1j ... a1n
]
. . .
[

ai1 ... aij ... ain
]
. . .
[
am1 ... amj ... amn

]]
Column-major

A =


a11 a1j a1n
...

...
...

ai1 aij ain
...

...
...

am1 amj amn


Flatten into a vector of Rmn:

A =
[[

a11 ... ai1 ... am1

]
. . .
[
a1j ... aij ... amj

]
. . .
[
a1n ... ain ... amn

]]
Parallelization

Given a distribution on p processors, for clarity in the following figures the ranks
are considered index from zero to ω = p− 1.
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The matrix M can be partitioned row-wise,

M =



[
M0

]
...[

Mk

]
...[

Mω

]


or column-wise

M =



M0

 · · ·

Mk

 · · ·

Mω




depending on the type of operation required.

In the case of Finite Element the matrix is partitioned row-wise, following
the distribution of degrees of freedom: each row block corresponds to a range of
degrees of freedom owned by the processor. In the case of linear Lagrange Finite
Elements degrees of freedoms are located at the vertices which allows to reuse
the same mapping for vertices, degrees of freedom, and algebraic unknowns.

Each row-block consists of submatrices corresponding to the column-wise
distribution:

M =


M00 · · · M0r · · · M0ω
...

. . .
...

. . .
Mq0 · · · Mqr · · · Mqω
...

. . .
...

. . .
...

Mω0 · · · Mωr · · · Mωω


The rectangular matrix on each row can be split in two sparse matrices:

1. Dk: the diagonal blocks containing only local contributions

2. [ Mkj ] : j 6= k

M =


D0 · · · M0r · · · M0ω
...

. . .
...

. . .
Mq0 · · · Dqr · · · Mqω
...

. . .
...

. . .
...

Mω0 · · · Mωr · · · Dωω


Each of these row blocks with m row of z non-zero entries can be stored

using a CSR format:

1. O ∈ Nm: containing the offset of column indices for each row,
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2. C ∈ Nm×z: containing the column indices for each row,

3. V ∈ Rm×z: containing the corresponding entries.
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Finite elements

Weak formulation and Galerkin methods

The study of mathematical properties of PDE problems is usually performed on
a general formulation called abstract problem which reads in this case:∣∣∣∣∣∣

Find u ∈ V , such that:

a(u, v) = L(v) , ∀ v ∈ V
(3.1)

with a( · , · ) a continuous bilinear form on V × V and L( · ) a continuous linear
form on V .

For the weak formulation of the Helmoltz equation, the bilinear form reads

a : V × V → R

(u, v) 7→
∫

Ω
u v dx +

∫
Ω
∇u ·∇v dx

and the linear form,
L : V → R

v 7→
∫

Ω
f v dx

The weak formulation given by Problem (3.1) involves looking for a solution
in a space V which has an infinite dimension as the function u is defined at
any point of domain Ω. The approximation of Problem (3.1) by a Galerkin
method consists of constructing a discrete space Vh which has a finite dimension.
The dimension of Vh is the number of degrees of freedom, i.e. the number of
unknowns of the problem. Solving the discrete problem consists of finding the
values of real coefficients ui, i = 1, ..,dim(Vh) that define the discrete solution
uniquely (if the discrete problem is well-posed):

uh(x) =

dim(Vh)∑
j=1

ujϕj(x)

with {ϕj} a basis of Vh.
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Admissible mesh

Definition 3.0.1 (Mesh). Let Ω be polygonal (d = 2) or polyhedral (d = 3)
subset of Rd, we define Th (a triangulation in the simplicial case) as a finite
family {Ki} of disjoints non-empty subsets of Ω named cells. Moreover V = {vi}
denotes the set a vertices of Th.

The Finite Element Method constructs the finite-dimensional space Vh based
on a discretization of the geometric domain Ω. In the case of P1 elements,
the domain Ω will be considered as a union of disjoint cells Ki which will be
intervals in one dimension, triangles in two dimensions, and tetrahedra in three
dimensions.

Only conforming mesh are considered, such that any facets of a cell is a facet
for a neighbouring cell, or a facet located on the boundary of the domain: no
hanging nodes are permitted.

Reference element

From a discretization of the domain Ω into cells, the construction of the discrete
space Vh consists of choosing where to evaluate the degrees of freedom, and how
to evaluate them. The definition of a Finite Element consists of a triple (K,P,Σ)
that will provide the expansion of the discrete function uh ∈ Vh as:

uh(x) =

dim(Vh)∑
j=1

ujϕj(x)

with uj real coefficients (degrees of freedom), and ϕj a family of functions gen-
erating V . The three ingredients correspond to choosing a cell K, constructing
a basis for Vh, and finally deciding how to evaluate the degrees of freedom {uj}.

Definition 3.0.2 (Finite Element). A Finite Element consists of a triple (K,P,Σ),
such that

• K is a compact, connected subset of Rd with non-empty interior and with
regular boundary (typically Lipshitz continuous),

• P is a finite dimensional vector space, dim(P) = N , of functions p : K →
R, which is the space of shape functions,

• Σ is a set {σ}j of linear forms,

σj : P → R , ∀ j ∈ [[1, N ]]

p 7→ pj = σj(p)

which is a basis of L(P,R), the dual of P.

In the case of P1 elements:
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1. K are intervals, triangles, or tetrahedra.

2. P is constructed by the choice of piecewise linear functions ϕi.

3. Σ defines the degrees of freedom as nodal values uj = u(xj)

The location of degrees of freedoms depends on the Finite Element: in the
case of P1 they are located at vertices of the mesh, and for the sake of simplicity
only structured meshes will be considered in two dimension.

The Finite Element can be expressed in the form of a Reference Finite
Element (K̂, P̂, Σ̂) considered on a reference cell K̂. For example, in the case
of simplicial meshes the reference cell K̂ in one dimension is the unit interval
[0, 1], in two dimension the unit triangle with vertices {(0, 0), (0, 1), (1, 0)}.

Shape functions ϕj for the P1 Reference Element on an interval:

ϕ1(x̂) = 1− x̂
ϕ2(x̂) = x̂

Shape functions ϕj for the P1 Reference Element on a triangle:

ϕ1(x̂) = 1− x̂− ŷ
ϕ2(x̂) = x̂

ϕ3(x̂) = ŷ

Transport of the Finite Element

For Lagrange elements the transformation between the Reference Finite Element
(K̂, P̂, Σ̂) to the Finite element (K,P,Σ) on any cell of the mesh is achieved by
an affine mapping TK : x̂ 7→ x from the reference element K̂ to cell K,∫

K
ψ(x)dx =

∫
K̂
ψ ◦ TK(x̂)| det(JK)|dx̂

The contribution can be calculated on the reference element using

ϕ(x) = ϕ̂(x̂)

and The contribution can be calculated on the reference element using

JK(x̂)T · ∇ϕ(x) = ∇ϕ̂(x̂)

The one-dimensional and two-dimensional Jacobian matrices are,

JK =
[
x1 − x0

]
and

JK =

[
x1 − x0 x2 − x0

y1 − y0 y2 − x0

]
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Numerical Integration

Integration is performed with quadrature rules as the weighted sum over q Gauss
points in the reference element,∫

K̂
ψ̂(x̂)dx̂ ≈

∑
q

ψ̂(x̂q)ω̂q

so that any contribution from cell K ∈M is∫
K
ψ(x)dx ≈

∑
q

ψ(x̂q) ◦ TK(x̂q)ω̂q|det(JK)(xq)|

Assembly

For each cell K ∈M terms encountered in the Helmoltz equation are under the
form of a stiffness matrix A, ∫

K
ϕj(x)ϕi(x)dx

and a mass matrix M ∫
K
∇ϕj(x)∇ϕi(x)dx


