
Introduction to
Supercomputing

TMA4280 · Introduction to development tools

0.1 Development tools
During this course, only the make tool, compilers, and theGIT toolwill be used
for the sakeof simplicity: no integrateddevelopment environment is required.
The purpose of the computers labs and project is to get you to do fairly low-
level programming with C/C++ or FORTRAN using OpenMP and MPI. You
need to be able to write simple algorithms involving vectors and matrice,
manage the allocation/deallocation of memory, and compile/run the code.
Of course you are free to explore more advanced aspects of the development
of numerical algorithms on a computer, feel free to ask questions.

Revision control system

In this section, we will use the GIT revision control system tool to create a
local repository and push it to Github. You need to create an account on
GitHub to be able to create source code repositories. Although, not crucial
for this course, it will make your work more efficient and ease working with
your teammate(s) on the projects.

Motivations and goals

The rationale behind Revision Control Systems (RCS) is that the history of
code development should be kept to understand the evolution of the software,
and that several individuals should be able to work on the same code base
simultaneously. Different RCS exist and adopt a more or less distributed
collaborative approach. GIT has become the most popular in the recent
years (mainly because it is used by GNU/Linux communities), and offers a
distributed environment for collaborating on projects.

A collection of files can be tracked using a RCS: the history ofmodifications
of each file is recorded and can be reviewed at any time. The collection of files
tracked and the metadata used to do so consist of a repository. In your case,
the files will be source code, makefiles, reports, . . . Whenever the collection
of files tracked contains source code, it is usually called a source repository.

Concepts

The source repository consists of a tree of directories containing the files
(source code, build tools, documentation), . . .) The history of changes to this
collection of files will be kept and represented as a sequence of changesets: any
changeset contains the modification to the files. A new changeset is created any
time, you commit the modifications.

To allow simulaneous work on the code, the notion of branch should
be introduced. You can represent working on a project with a tree: the
work is added to a reference version sometimes called a trunk, but people
should be able to work independently and simulaneously on the project, so
they are able to create a local branch containing their modifications. Usually
for software taska requiring modifications fall in the “bug fix” or “feature”
category. Sometimes the reference version changes and the local branch needs
be synchronized with a remote branch. When the task is completed, the local
branch can be synchronized with the remote branch, possible conflicts solved
(modifications to the same file), and finally merged.

master
“Trunk of the tree”

Fork a branch
task0

By default, a branch name master is created: you can create a new branch
from master to work on your own version of the code, then merge the modi-
fications at a later stage.

master
“Trunk of the tree”

Merge a branch
task0

The workflow can be summarized as:

1. Fork a branch

2. Add modifications and synchronize if necessary

3. Solve conflicts

4. Merge

The merge step on GitHub is performed using a “Pull Request”: an issue is
opened, the code is subject to review, and finally merged if approved.

Exercise 1. Open a terminal and go to the directory you created last week, it
does not contain a GIT repository yet:
$ git status
fatal: Not a git repository (or any parent up to mount point /home)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).

Follow the steps:

1. Use git init to create a local repository in this directory: you should see now
a .git directory appear, do not delete it!

$ git init
Initialized empty Git repository in /home/<user>/TMA4280/.git/

2. Use git status to list files in thedirectory: they shouldbe shownasuntracked.

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file >..." to include in what will be committed)

README
cat/
shell/

nothing added to commit but untracked files present (use "git add" to track)

3. Create an empty file named README and add it to the repository

$ git add README
$ git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file >..." to unstage)

new file: README

Untracked files:
(use "git add <file >..." to include in what will be committed)

cat/
shell/

4. Create your first commit containing the README file (you can write your
name in this file for example).

$ git commit -m "Initial commit"
[master (root-commit) 4a177e4] Initial commit
1 file changed, 1 insertion(+)
create mode 100644 README

5. Add all the files you created in the project directory TMA4280 and commit them.

6. Create an account on GitHub then create a repository named TMA4280v2018 in
the user interface: this remote repository will contain your files.

7. Follow the instruction on GitHub and upload (push) the local branch to the
remote repository.

$ git remote add origin https://github.com/<username >/TMA4280v2018.git
$ git push -u origin master

Now that your remote repository is created and updated with your initial
files, let us have a quick look at the local repository.

Exercise 2. To understand the principle of commits and branches, follow the
steps:

1. Use git log to look at the history of your repository.

2. Use git branch to list local branches.

3. Use git checkout -b to create a branch named lab01 and list again
the branches.

4. Use git push to push the branch to the remote repository and check on
GitHub that it is listed.

With this simple introduction you should be able to manage the exercises
and projects without risking losing your work.

GIT Reference

This list presents basic actions that you may need to perform for managing
your projects.

Initialize a repository

git init

Clone a repository

git clone <repository_location >

Create a branch

git checkout -b <branch_name >

Checkout file from other branch if necessary

git checkout <branch_name > -- <paths>

Synchronize feature branch with master

git checkout <my_branch_name >
git pull --rebase origin master

Cleanup commit history before merge
WARNING: Don’t cleanup history if more than one person works on the

branch!
Find the number of last commits to be reordered with:

git log

Then:

git rebase -i HEAD~n

with n the number of commits to be treated (until now nothing is modified),
or until the commit with given hash.

git rebase -i hash

Use the following commands to change to first keyword

Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell

Using squash (’s’) merges commits together.
Possibly use this command to change the last commit message

git commit --amend

Cleanup master branch locally

git pull --rebase origin master
git reset --hard

Fetch all the branches from the remotes

git fetch --all

Pick specific commits from any branch

git cherry-pick <commit_hash >

Remove untracked files from working directory

git clean -f -d

Adding a reference to a bug
Add a keyword and the ID in the commit message, like:

git commit -m "This is nice commit message"

• Compiler commands and options vary across systems and depend on
the programming language,

• Binaries are created in three main stages: the source code is pre-
processed (ex: cpp), then compiled into objects (ex: cc) and finally
linked into a library or executable (ex: ld).

0.2 C Programming

Table 0.1: Data types

Type Description
char Signed or unsigned integer stored on 8 bits, a byte.
short Integer of a least 16-bit long.
int Integer of a least 16-bit long, usually 32-bit long.
long Integer of a least same size as int, usually 32-bit long.
float Single precision floating-point number of size 32 bits
double Double precision floating-point number of size 64 bits

Integer types can be signed or unsigned.

Table 0.2: Control flow statements and loops

Name Description
if { condition } (...) Conditional.

if { condition } (...) else (...) Conditional.
for (pre;condition;post) { ...} Loop.
while (condition) { ...} Loop.
do { ...}while (condition) Loop.

switch (variable) { case value: body; break; ...} Switch between cases.

Exercise 3. Let us create our first program, the famous “Hello world!”:

1. Go to the progs directory and create a hello0 subdirectory.

2. Create a main.c file, implement a program printing Hello world! in C
using the printf function.

3. Compile and execute it.

• The code consists of a single source file.
• The compilation and linking can be done in a single command.

gcc -o hello hello.c

• We might want to turn on compiler optimizations.

gcc -o hello hello.c -O2

• We might want to include debugging info.

gcc -o hello hello.c -g

4. Copy the directory to hello1, create a header and source file to separate
the implementation from the main file: list the commands required to
build the program and write a Makefile.
gcc -c -o hello.o hello.c
gcc -c -o utils.o utils.c
gcc -o hello hello.o utils.o

5. Modify the program to print Goodbye world! depending on an in-
put argument, then add support for a number of times the message
should be printed using int ntimes = atoi(argv[1]); to convert the
argument.

6. Copy the directory to hello2, modify the Makefile to create a static
library and link.

• We first link the printing functions into a library
gcc -c -o hello_utils.o hello_utils.c
gcc -c -o goodbye_utils.o goodbye_utils.c
ar r libutils.a hello_utils.o goodbye_utils.o

• Then we build the program.
gcc -c -o main.o main.c
gcc -o hello main.o libutils.a

Table 0.3: Main function

#include <stdio.h>

int main(int argc, char **argv)
{
return 0;

}

Small programming exercises

Exercise 4. Data model. Implement a C/C++ program that creates four integer
variables i0, i1, i2, i3 of type char, short, int, long and two real variable
r0, r1 of type r0, r1. Using the functions printf and sizeof() to print the
number of bytes used for each data type. Compile the program in 32− and
64−bit using the -m32 and -m64 options, and note the values in a file. Which
model is used in the 64−bit case?

Exercise 5. Matrix-Vector product. Implement a C/C++ program that computes
y � Ax.

A �
©«
0.3 0.4 0.3
0.7 0.1 0.2
0.5 0.5 0.0

ª®¬ , x �
©«
1.0
1.0
1.0

ª®¬ .
Two versions possible.
Exercise 6. Vector sum. Implement a C/C++ program that creates three real
vectors x , y , z, one real number α and computes z � αx + y for given x and y
(double-precision). First use a fixed-size of 10 then implement a version with
dynamic size.
Exercise 7. Dot product. Implement a C/C++ program that creates two real
vectors x , y ∈ RN and one real number α and computes α �

∑N
i�1 xi yi for

given x and y (double-precision).

