
1

Review of previous examinations
TMA4280—Introduction to Supercomputing

NTNU, IMF

April 24. 2017

Examination

The examination is usually comprised of:
— one problem related to linear algebra operations with calculation of

complexity and parallelism.
— one problem related to parallelization of solver for partial differential

equations.
— a series of short questions covering all the topics of the course.

to be solved in four hours.

2

Important points

The course covered a broad range of topics, but a few points are
important:
— Differentiate between the different types of parallelism (data,

functional/task, and fine-/coarse-grained).
— Be able to categorize hardware architectures, e.g with Flynn’s

taxonomy and understand their benefits/drawbacks.
— Understand the memory hierarchy of computers and how it affects

the performance of solvers.
— Be able to define clearly and use the distributed and the

shared-memory model.
— Have a basic knowledge of the different specifications (OpenMP,

MPI, BLAS) and libraries (LAPACK, PETSc) discussed.

3

Questions: Parallel computing

Question (2016)

A good strategy for reducing communication overhead is to increase the
number of processes. Answer: true or false

It is crucial to remember Amdhal’s Law, and for instance the practical
effect observed in your project when studying the strong scaling.

Question (2015)

A code with a large parallel effciency typically has much network traffic.

The same arguments apply.

Question (2015)

A code with a large parallel speedup has a large parallel effciency.

The same arguments apply.

4

Questions: Computer architecture

Question (2016)

The following loops are compiled with an optimizing compiler:
— Which of them will likely have the highest performance (more

FLOPS)?
— The following loops are compiled with an optimizing compiler. Which

of them will likely have the highest performance (more FLOPS)?
Answer: A, B or none. Briefly explain why.

A:

for (int i = 0; i < N ; i ++)

a[i] = a[i] + b [i];

B:

for (int i = 0; i < N ; i ++)

a[i] = a[i] + c * b [i];

Remember the definition of FLOPS and the capabilities of processor
when it comes to floating-point operations.

5

Questions: Computer architecture

Question (2015)

A ccNUMA machine can always do multiple additions in parallel. Answer:
true or false

Remember Flynn’s taxonomy and the discussion on different computer
architectures.

Question (2015)

An LFU cache replacement policy is typically the best for solving partial
differential equations

The question was briefly discuss in the description of different caching
policies: First-In First-Out (FIFO), Least-Frequent Used (LFU),
Least-Recently Used (LRU) and the pseudo-LRU. Even without
remembering the details of the implementation, you can think about the
memory access pattern.

6

Questions: Computer architecture

Question (2015)

A SIMD processor can perform a multiplication and an addition
simultanously. Answer: true or false.

Remember Flynn’s taxonomy to motivate your answer.

Question (2015)

Cancellation is a concern when subtracting floating point numbers.
Answer: true or false.

Remember the binary representation of floating-point numbers and how it
affects the decimal precision.

Question (2014)

Floating point numbers of a given precision can only represent a fixed
range of numbers.

Remember the binary representation of floating-point numbers.

7

Questions: Computer architecture

Question (2014)

A modern processor typically has a cache hierarchy. These are designed
as levels, where a higher level is given to faster memory.

Remember for instance the architecture of modern CPUs and the
different memory levels.

Question (2014)

A superscalar processor can perform two additions simultanously.

Remember the discussion about pipelining.

8

Questions: Distributed memory

Question (2016)

— It is always OK to call MPI library functions from different threads.
Answer: true or false.

— It is never OK to call MPI library functions from different threads.
Answer: true or false.

MPI_THREAD_SINGLE
Only one thread will execute.

MPI_THREAD_FUNNELED
The process may be multi -threaded , but only the main thread will
make MPI calls (all MPI calls are funneled to the main thread).

MPI_THREAD_SERIALIZED
The process may be multi -threaded , and multiple threads may make MPI calls , but only one at a time: MPI calls are not made concurrently from two distinct threads (all MPI calls are serialized).

MPI_THREAD_MULTIPLE
Multiple threads may call MPI , with no restrictions.

In practice MPI_THREAD_SINGLE only is portable, see Balaji (2010) for a
discussion.

9

Questions: Distributed memory

Question (2011)

Consider the MPI-function below: the amount of data sent corresponds to
128 floating point numbers in double precision. Answer: true or false.

MPI_Send(buffer , 1024, MPI_DOUBLE , dest , tag , MPI_COMM_WORLD);

Writing the code for the projects should make this question easy.

Question (2011)

The most efficient implementation of the MPI_Allreduce operation on P
processors completes in a certain number of communication stages.
Which of the 4 alternatives is correct: (i) 1 stage; (ii) log 2 (P) stages; (iii)
2 log 2 (P) stages; (iv) P stages

Remember your implementation in Project I.

10

Questions: Distributed memory

Question (2011)

The functions MPI_Send and MPI_Recv are appropriate to use for the
exchange of an interprocess boundary. Is it possible to experience
"deadlock" when using these functions? Answer: yes or no.

Knowledge of point-to-point communication is sufficient.

11

Questions: Shared-memory model

Question (2016)

Since threads do not need to communicate (like processes do), there is
no penalty incurred by using more of them. Answer: true or false.

Remember how OpenMP works and the difference between concurrency
and parallelism.

Question (2014)

OpenMP is usable from all programming languages.

Just enough to know about the OpenMP specification.

12

Questions: Numerical Linear Algebra

Question (2016)

BLAS is a high performance library for solving linear systems of
equations. Answer: true or false.

Remember how the specification was introduced during the lecture. Hint:
different level of algebric operations.

Question (2015)

In code utilizing dense linear algebra, you have to choose between using
BLAS or LAPACK. Answer: true or false.

Similar question, the relation betweeen BLAS and LAPACK is important to
remember.

13

Questions: Numerical Linear Algebra

Question (2015)

Using PETSc there is no point in pre-declaring the sparsity pattern of your
operator. Answer: true or false.

Review how the storage for a sparse matrix is handled and how it may
affect the performance.

Question (2014)

You typically get performance closer to the theoretical peak performance
of a machine when you do level 1 operations (vector operations)
compared to level 3 (matrix-matrix operations).

Think about the ratio between operations and data movement.

14

Questions: Parallel Input/Output

Question (2015)

MPI-I/O is often used to do post-mortem data assembly. Answer: true or
false.

The exact term as not been mentioned during the lecture but remember
how the MPI-I/O implementation works.

Question (2014)

MPI-I/O always writes multi-dimensional arrays in Fortran order.

Just remember the purpose of MPI-I/O.

15

Notions used in Problems

Some notions are important and will be used during the examination.

Linear model for transmission:

(1) τc(k) = τs + γk

with τs a constant that is the start-up phase and γ the inverse bandwith.

16

Notions used in Problems
Study of parallel performance of algorithms.

Amdahl’s law: speed-up on p processor w.r.t serial

Sp =
T1

Tp
=

p
f (1− p) + 1

with f fraction of time spent in serial sections of the code.

The fraction f :
— → 1 for purely serial case

— → 0 for idea parallel case
Linear strong scaling: f = 0

Sp =
T1

Tp
= p

ideal speed-up when solving a fixed problem on p processors.

17

Challenges of parallel computing

Ideally

Realistically

P

SP

Figure: Ideal speedup (SP = P) and realistic speedup.

→ strong scaling should be interpreted carefully! → weak scaling should
also be considered.

18

