
1

Discussion on Iterative Solvers
TMA4280—Introduction to Supercomputing

NTNU, IMF

February 27. 2017

Problem

— Solve
Ax = b, b,x ∈ RN , A ∈ MN(R)

where A can be the system resulting from discretizing a Poisson
problem using finite differences.

— We use standard notation for matrices and vectors, i.e.
a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · · aN,N

x1
x2
...

xN

 =

b1
b2
...

bN

2

Direct methods

— Computing the inverse of the matrix is unrealistic,
— Matrix inversion has the same time complexity as matrix

multiplication (typically O(n3)).
— Direct methods can theoretically compute exact solutions xRN to

linear systems in the form of:

Ax = b

— Several methods were introduced based on factorizations of the type
A = P Q

— P and Q have a structure simplifying the resolution of the system:
diagonal, banded, triangular.

— The structure and properties of the matrix A determine which
algorithms we can use.

Ex: LU, Cholevski involve triangular matrices, QR constructs an
orthogonal basis.

3

Iterative methods

All methods prove to be quite expensive, hard to parallelize due to the
sequential nature of the algorithm and prone to error propagation.

Iterative methods have been developed for:
— solving very large linear systems with direct methods is in practice

not possible due to the complexity in term of computational
operations and data,

— taking advantage of sparse system for which the structure of the
matrix can result in dramatic speed-up (this is the case for numerical
schemes for PDEs),

— using the fact that some systems like PDEs discretizations are
already formulated in an iterative fashion.

4

General idea

Introduce a splitting of the form:

A = G−H

such the solution x satisfies:

Gx = b + Hx

Similarly to fixed-point methods we can define a sequence of approximate
solutions

(
xk
)

satisfying relations of the form:

Gx̂k+1 = b + Hx̂k

with G invertible.

5

Link to linear mappings

The matrix viewed as a linear mapping in RN :
— the counterpart embodied by the Brouwer Theorem in finite

dimension,
— Continuous mapping f : Ω→ Ω with Ω compact of RN

1. Admits a fixed-point x? satisfying f (x?) = x?,
2. and is contracting.

Following a sequence of approximate solutions
(
xk
)

in RN

6

Computational aspects

Methods introduced depend on the iteration defined by the splitting:
1. How can the convergence be ensured?
2. How fast is the convergence?
3. How expensive is each iteration?
4. How does the algorithm behave with respect to numerical error?

Estimate on error vectors in terms of iteration error ε̂k = x̂k+1 − x̂k or
global error: εk = x̂k − x . With A = G−H

ε̂k = G−1H ε̂k−1

Existence of a contraction factor K < 1 such that ‖ε̂k‖∞ ≤ K ‖ε̂k−1‖∞
Spectral radius ρ(M) as ρ(M) < 1 since in that case limk→∞Mk ε̂0 = 0RN .
The smaller the spectral radius, the faster the convergence.

7

Jacobi, methods of simultaneous displacements

(1) x̂k+1
i =

1
aii

(
bi −

∑
i 6=j

aij x̂k
j

)

Convergence: the global error εk is controlled by

‖εk+1‖ ≤
∑
i 6=j

∣∣∣aij

aii

∣∣∣ ‖εk‖ ≤ K k ‖ε1‖

It is then enough if the matrix is strictly diagonally dominant. Expressing
the iteration error gives M = G−1H such that ρ(M) < 1.

1. Parallelization component by component is possible since there is
only dependency on x̂k .

2. Memory requirement for storing both x̂k+1 and x̂k at each iteration.

8

Gauss–Seidel, methods of sucessive displacements

In Jacobi iterations, notice that sequential ordered computation of terms

(2) x̂k+1
i =

1
aii

(
bi −

∑
i 6=j

aij x̂k
j

)
involves components x̂k

j which are also computed for x̂k+1 if j < i .

(3) x̂k+1
i =

1
aii

(
bi −

∑
i<j

aij x̂k+1
j −

∑
i>j

aij x̂k
j

)

Algorithm: the splitting is
A = L− R0

with L = D + L0 lower-triangular matrix and R0 strict upper-triangular
matrix, thus

x̂k+1 = D−1(b − L0x̂k+1 + R0x̂k)

9

Gauss–Seidel, methods of sucessive displacements

Recast under the usual form:

x̂k+1 = L−1(b + R0x̂k)

and the iteration matrix is M̄ = L−1R0.

Convergence: the global error εk is controlled by

‖εk+1‖ ≤

∑
i>j

∣∣∣aij

aii

∣∣∣
1−

∑
i<j

∣∣∣aij

aii

∣∣∣ ‖εk‖ ≤ K̄ k ‖ε1‖

If the Jacobi contraction factor K < 1 then K̄ < 1. Expressing the iteration
error gives directly that M̄ = L−1R0 such that ρ(M̄) < 1.

10

Gauss–Seidel, methods of sucessive displacements

Implementation:
1. Parallelization component by component is not possible easily since

there is serialization for each row i due to the dependency on x̂k+1
j ,

j < i .
2. Memory requirement is only for storing one vector of RN at each

iteration.

Parallelization possible if the matrix is sparse: components do not all
possess connectivities with each other:

1. Component Dependency-Graph: generate a graph to reorder entries
such that dependencies are avoided.

2. Red–Black coloring: special case for two-dimensional problems.

11

Relaxation methods

Introduce the relaxation parameter γ ∈ (0,1): adding a linear combination
of the approximate solution at the previous iteration to minimize the
spectral radius for convergence.

The relaxation parameter γ cannot be known a priori and is usually
determined by heuristics.

12

Relaxation methods
1. Jacobi Over-Relaxation (JOR):

(4) x̂k+1
i = (1− γ) x̂k

i + γ
1
aii

(
bi −

∑
i 6=j

aij x̂k
j

)
which reads in matricial form

x̂k+1 = Mγ x̂k + γD−1 b

with Mγ = (1− γ)I + γD−1H

2. Successive Over-Relaxation (SOR):

(5) x̂k+1
i = (1− γ) x̂k

i + γ
1
aii

(
bi −

∑
i<j

aij x̂k+1
j −

∑
i>j

aij x̂k
j

)
which reads in matricial form

x̂k+1 = Mγ x̂k + γC b

with Mγ = (1 + γD−1L0
−1)−1

[
(1− γ)I + γD−1R0

]
and

C = (1 + γD−1L0
−1)−1D−1

13

Krylov-subspace methods

Idea: decomposition on a sequence of orthogonal subspaces.

If A is symmetric definite positive it induces the corresponding scalar
product:

〈 x , y 〉 = (Ax , y) = yTAx

with (A· , ·) canonical scalar product in RN . The vectors (e1, . . . ,eN) are
said A-conjugate if eT

j Aei = 0 for i 6= j : they are orthogonal for the
scalar-product induced by A.

To bring the Conjugate Gradient method, first let us introduce the idea of
descent method.

14

Descent methods

Minimisation of the residual:

x? = argminx J(x) =
1

2
〈 x , x 〉 − 〈 b , x 〉

Construct a sequence of solutions to approximate minimization problems,
given x̂k :

J(x̂k+1) ≤ J(x̂k)

where x̂k+1 = x̂k + αk+1ek+1, with αk+1 a descent factor and ek+1 a
direction.

15

Steepest Gradient

For the Steepest Gradient:
1. take the direction given by −∇J(x̂k) = b−Ax̂k which is the residual

rk = b −Ax̂k , thus x̂k+1 = x̂k + αk+1rk .
2. choose the descent factor αk+1 minimizing the functional

J(x̂k + αk+1rk):

αk+1 =
rT
k b

rT
k Ark

1. Speed of convergence is bounded by O
(
1− C(A)−1

)
with C(A) the

conditioning of A.
2. Gradient direction may not be optimal: Conjugate Gradient methods

improve the choice of
(
ek
)
.

16

Conjugate Gradient

The Conjugate Gradient (CG) is a Krylov-subspace algorithm for
symmetric positive definite matrices.

Given x̂0,
(
x̂k
)

is q sequence of solutions to approximate k -dimensional
minimisation problems.

For the Conjugate Gradient:
1. take the direction ek+1 such that

(
e1, . . . ,ek ,ek+1

)
is A-conjugate,

thus x̂k+1 = x̂k + αk+1ek+1.
2. choose the descent factor αk+1 minimizing the functional

J(x̂k + αk+1rk), which is defined by

αj =
eT

j b
eT

j Aej

and with eT
j b 6= 0 (unless the exact solution is reached).

17

Conjugate Gradient

The construction of
(
e1, . . . ,ek+1

)
is done by orthogonalization of

residuals by Gramm–Schmidt:

ek+1 = rk −
eT

k Ark−1

eT
k Aek

so that rk+1 = b −Ax̂k+1 = rk − αk+1Aek+1

After N steps, the A-conjugate basis of RN is done and the exact solution
is reached:

x =
N∑

j=1

αj x̂ j

18

Conjugate Gradient

For any k , the speed of convergence is bounded by

O

(
1−

√
C(A)

1 +
√
C(A)

)2k

in the norm induced by A, with C(A) the conditioning of A.

The Conjugate Gradient can therefore be seen as a direct methods but in
practice:
— the iterative computation of the A-conjugate basis suffers from the

same issue of numerical error propagation as the QR factorization
leading to a loss of orthogonality,

— the convergence is slow, which makes it unrealistic to compute the
exact solution for large systems,

so it is used as an iterative method.

19

Conjugate Gradient
First steps:

1. Given x̂0 = 0, set r0 = b −Ax̂0 and e1 = r0,
2. Take x̂1 = α1e1, then α1eT

1 Ae1 = eT
1 b, thus

α1 =
rT
0 b

rT
0 Ar0

3. Compute the residual:
r1 = b −Ax̂1

4. Compute the direction:

e2 = r1 −
eT

1 Ar0

eT
1 Ae1

5. Compute the factor:

α2 =
eT

2 b
eT

2 Ae2

6. Update the solution:
x̂2 = x̂1 + α2e2

7. . . .
20

Conjugate Gradient
The algorithm iteration reads:

1. Compute the residual:
rk = b −Ax̂k

2. Compute the direction:

ek+1 = rk −
eT

k Ark−1

eT
k Aek

3. Compute the factor:

αk+1 =
eT

k+1b
eT

k+1Aek+1

4. Update the solution:

x̂k+1 = x̂k + αk+1ek+1

which requires two matrix-vector multiplications per loop, Ax̂k then Aek+1
Using rk+1 = rk − αk+1Aek+1 saves one matrix-vector multiplication.

21

Conjugate Gradient
While the residual norm %k = ‖rk‖2 is big:

1. Compute the projection:

βk = − %k

%k−1

2. Compute the direction:

ek+1 = rk + βk ek

3. Compute the factor:

w = Aek+1;αk+1 =
%k

eT
k+1w

4. Update the solution:

x̂k+1 = x̂k + αk+1ek+1

5. Update the residual:
rk+1 = rk − αk+1w

Cost is one matrix-multiplication and five vector operations.

22

Preconditioners

The convergence is still slow as soon as the condition number of the
matrix is bad.

Preconditioning the system consists in finding a non-singular symmetrix
matrix C such that Ã = C−1AC−1 and the conjugate gradient is applied to

Ãx̃ = b̃

with x̃ = C−1x and b̃ = C−1b.

With:
— M = C2

— ek = C−1ẽk

— x̂k = C−1 ˜̂xk

— zk = C−1r̃k

— rk = Cr̃k = b −Ax̂k

and M is a symmetric positive definite matrix called the preconditioner.

23

Preconditioned CG
While the residual norm %k = ‖rk‖2 is big:

1. Solve:
Mzk = rk

2. Compute the projection:

βk = −
zT

k rk

zT
k−1rk−1

3. Compute the direction:

ek+1 = zk + βk ek

4. Compute the factor:

αk+1 =
zT

k rk

eT
k+1Aek+1

5. Update the solution:

x̂k+1 = x̂k + αk+1ek+1

6. Update the residual:
rk+1 = rk − αk+1w

24

Preconditioned CG

The linear system Mzk = rk should be easy to solve and can lead to fast
convergence, typically O (()

√
N). Since

Mzk = b −Ax̂k

Then an iterative relation appears:

x̂k+1 = M−1(b −Ax̂k
)

therefore iterative methods like Jacobi, Gauss-Seidel and relaxation
methods can be used.

25

Power method

Find the dominant eigenvalues of a matrix A ∈ MN(R) of N eigenvectors(
vi
)

with associated eigenvalues
(
λi
)

ordered in decreasing module. The
eigenvalues are either real or conjugate complex pairs.

Given a random vector x0, construct a sequence of vectors
(
x̂k
)

such that

x̂k+1 = Ax̂k

then ∀k ≥ 0

x̂k =
N−1∑
i=0

λk
i ξivi

for some coefficients
(
vi
)
.

26

Power method

Assume that λ0 is a dominant real eigenvalue and ξ0 6= 0, then

x̂k = λk
0
(
ξ0v0 + rk

)
with the residual rk defined as

rk = λ−k
0

N−1∑
i=1

λk
i ξivi

and limk→∞ rk = ORN . To the limit x̂k+1 ≈ λ0x̂k ≈ λ0ξ0v0 almost parallel
to the first eigenvector.

27

Power method

— This method is fast to compute the spectral radius for the Jacobi
method and relaxation parameters.

— The convergence is geometric and the speed depends on the ratio
|λ1/λ0|.

— If the matrix is symmetric, the convergence speed can be doubled.
— If λ0 is very large or very small then taking high powers lead to

numerical issues, the algorithm requires a normalization.

28

Software Packages

Libraries like PETSc and Trilinos offer interfaces to:
— a wide-range of iterative solvers based on Krylov-spaces,
— preconditioned by block Jacobi. ILU, AMG, . . .
— so better design your software packages in consequence.

29

