
0.1 Iterative methods

As seen in the previous lecture, direct methods can theoretically compute exact
solutions xRN to linear systems in the form of:

Ax = b

with matrix with real coefficients A ∈ MN (R) and given data b ∈ RN , in a
determined finite number of steps.

As computing the inverse of the matrix is unrealistic, several methods were
introduced based on factorizations of the type A = P Q where P and Q have a
structure simplifying the resolution of the system: diagonal, banded, triangular.

Methods like LU, Cholevski take advantage of the existence of a decomposi-
tion involving triangular matrices while QR for example, involves the constru-
cion of an orthogonal basis. All methods prove to be quite expensive, hard
to parallelize due to the sequential nature of the algorithm and prone to error
propagation.

Iterative methods have been developed for:

• solving very large linear systems with direct methods is in practice not
possible due to the complexity in term of computational operations and
data,

• taking advantage of sparse system for which the structure of the matrix
can result in dramatic speed-up (this is the case for numerical schemes for
PDEs),

• using the fact that some systems like PDEs discretizations are already
formulated in an iterative fashion.

In this section, we discuss briefly the computational properties of iterative
methods for solving linear systems. Computing the exact solution is not a
requirement anymore but instead the algorithm is supposed to converge asymp-
totically to the exact solution: the algorithm is stopped when the approximate
solution is deemed close enough to the exact solution in a sense to be defined. A
parameter used as stopping criterion triggers the completion of the algorithm.

The general idea of these methods is to introduce a splitting of the form:

A = G−H

such the solution x satsifies:

Gx = b+ Hx

Similarly to fixed-point methods we can define a sequence of approximate
solutions

(
xk
)

satisfying relations of the form:

Gx̂k+1 = b+ Hx̂k

1

with G invertible.
The matrix viewed as a linear mapping in RN , the counterpart of such

approaches is given by the Brouwer Theorem in finite dimension, where a con-
tinuous mapping f : Ω → Ω with Ω compact of RN admits a fixed-point x?

satisfying f(x?) = x? and is contracting.

Methods introduced depend on the iteration defined by the splitting and call
for several questions regarding the computational aspects:

1. How can the convergence be ensure?

2. How fast is the convergence?

3. How expensive is each iteration?

4. How does the algorithm behave with respect to numerical error?

The question of the convergence is addressed by proving an estimate on error
vectors in terms of iteration error ε̂k = x̂k+1 − x̂k or global error: εk = x̂k −x.
The convergence rate α means that C > 0, |εk+1| ≤ C|εk|α.

For example, substituting x̂k+1 = G−1b+ G−1Hx̂k in ε̂k = x̂k+1 − x̂k gives
a relation between successive iteration errors:

ε̂k = G−1H ε̂k−1

with M = G−1H the iteration matrix, and recursively ε̂k = (G−1H)k+1ε̂0. Con-
vergence is then conditioned to the existence of a contraction factor K < 1 such
that ‖ε̂k‖∞ ≤ K ‖ε̂

k−1‖∞ ensuring decrease of the error.

In terms of the matrix M, this translate for the spectral radius ρ(M) as
ρ(M) < 1 since in that case limk→∞Mkε̂0 = 0RN . The smaller the spectral
radius, the faster the convergence.

Each method is described briefly and qualitatively with just the necessary
ingredients to discuss practical implementations.

0.2 Relaxation methods

Consider the relations for each row i = 1, . . . , N :

xi =
1

aii

(
bi −

∑
i 6=j

aijxj

)
(1)

Let us introduce two methods based on constructing sequences of approxi-
mate solutions

(
x̂k
)
, k ≥ 1 given an initial guess x̂0 ∈ RN and then associated

relaxation methods.

2

0.2.1 Jacobi, methods of simultaneous displacements

x̂k+1
i =

1

aii

(
bi −

∑
i 6=j

aijx̂
k
j

)
(2)

Convergence: the global error εk is controlled by

‖εk+1‖ ≤
∑
i 6=j

∣∣∣aij
aii

∣∣∣ ‖εk‖ ≤ Kk ‖ε1‖

It is then enough if the matrix is strictly diagonally dominant. Expressing the
iteration error gives directly that M = G−1H such that ρ(M) < 1.

Algorithm: the splitting is

A = D−H

with D = diag(A), thus
x̂k+1 = D−1(b+ Hx̂k)

Implementation:

1. Parallelization component by component is possible since there is only
dependency on x̂k.

2. Memory requirement for storing both x̂k+1 and x̂k at each iteration.

0.2.2 Gauss–Seidel, methods of sucessive displacements

In Jacobi iterations, notice that sequential ordered computation of terms

x̂k+1
i =

1

aii

(
bi −

∑
i 6=j

aijx̂
k
j

)
(3)

involves components x̂kj which are also computed for x̂k+1 if j < i.

x̂k+1
i =

1

aii

(
bi −

∑
i<j

aijx̂
k+1
j −

∑
i>j

aijx̂
k
j

)
(4)

Algorithm: the splitting is

A = L− R0

with L = D + L0 lower-triangular matrix and R0 strict upper-triangular matrix,
thus

x̂k+1 = D−1(b− L0x̂
k+1 + R0x̂

k)

or
L x̂k+1 = D−1(b+ R0x̂

k)

3

Recast under the usual form:

x̂k+1 = L−1(b+ R0x̂
k)

and the iteration matrix is M̄ = L−1R0.

Convergence: the global error εk is controlled by

‖εk+1‖ ≤

∑
i>j

∣∣∣aij
aii

∣∣∣
1−

∑
i<j

∣∣∣aij
aii

∣∣∣ ‖εk‖ ≤ K̄k ‖ε1‖

If the Jacobi contraction factor K < 1 then K̄ < 1. Expressing the iteration
error gives directly that M̄ = L−1R0 such that ρ(M̄) < 1.

Implementation:

1. Parallelization component by component is not possible easily since there
is serialization for each row i due to the dependency on x̂k+1

j , j < i.

2. Memory requirement is only for storing one vector of RN at each iteration.

0.2.3 Relaxation of Jacobi and Gauss-Seidel

Relaxation methods consists of adding a linear combination of the approximate
solution at the previous iteration to minimize the spectral radius for conver-
gence, using the relaxation parameter γ ∈ (0, 1).

1. Jacobi Over-Relaxation (JOR):

x̂k+1
i = (1− γ) x̂ki + γ

1

aii

(
bi −

∑
i 6=j

aijx̂
k
j

)
(5)

which reads in matricial form

x̂k+1 = Mγx̂
k + γD−1 b

with Mγ = (1− γ)I + γD−1H

2. Successive Over-Relaxation (SOR):

x̂k+1
i = (1− γ) x̂ki + γ

1

aii

(
bi −

∑
i<j

aijx̂
k+1
j −

∑
i>j

aijx̂
k
j

)
(6)

which reads in matricial form

x̂k+1 = Mγx̂
k + γC b

with Mγ = (1+γD−1L0
−1)−1

[
(1−γ)I+γD−1R0

]
and C = (1+γD−1L0

−1)−1D−1

The relaxation parameter γ cannot be known a priori and is usually deter-
mined by heuristics.

4

0.2.4 Parallelization of Gauss–Seidel

Overcoming the serialization in Gauss–Seidel is possible if the matrix is sparse.
Taking advantage of the fact that components does not all possess connectivities
with each other: such dependencies can be built from the sparsity pattern then
decoupled graphs identified:

1. Component Dependency-Graph: generate a graph to reorder entries such
that dependencies are avoided.

2. Red–Black coloring: special case for two-dimensional problems.

0.3 Krylov-subspace methods

The idea of these methods is that the solution is decomposed on a sequence of
orthogonal subspaces.

If A is symmetric definite positive it induces the corresponding scalar prod-
uct:

〈 x , y 〉 = (Ax , y) = yTAx

with (A· , ·) canonical scalar product in RN . The vectors (e1, . . . , eN) are said
A-conjugate if eTj Aei = 0 for i 6= j: they are orthogonal for the scalar-product
induced by A.

0.3.1 Principle of descent methods: Steepest Gradient

Minimisation of the residual:

x? = argminx J(x) =
1

2
〈 x , x 〉 − 〈 b , x 〉

Construct a sequence of solutions to approximate minimization problems,
given x̂k:

J(x̂k+1) ≤ J(x̂k)

where x̂k+1 = x̂k +αk+1e
k+1, with αk+1 a descent factor and ek+1 a direction.

For the Steepest Gradient:

1. take the direction given by −∇J(x̂k) = b − Ax̂k which is the residual
rk = b−Ax̂k, thus x̂k+1 = x̂k + αk+1rk.

2. choose the descent factor αk+1 minimizing the functional J(x̂k +αk+1rk):

αk+1 =
rTk b

rTk Ark

The speed of convergence is bounded by O
(
1− C(A)−1

)
with C(A) the con-

ditioning of A. The gradient direction may not be optimal, Conjugate Gradient
methods improve the choice of

(
ek
)
.

5

0.3.2 Conjugate Gradient

The Conjugate Gradient (CG) is a Krylov-subspace algorithm for symmetric
positive definite matrices.

Given x̂0,
(
x̂k
)

is q sequence of solutions to approximate k-dimensional
minimisation problems.

For the Conjugate Gradient:

1. take the direction ek+1 such that
(
e1, . . . , ek, ek+1

)
is A-conjugate, thus

x̂k+1 = x̂k + αk+1ek+1.

2. choose the descent factor αk+1 minimizing the functional J(x̂k +αk+1rk),
which is defined by

αj =
eTj b

eTj Aej

and with eTj b 6= 0 (unless the exact solution is reached).

The construction of
(
e1, . . . , ek+1

)
is done by orthogonalization of residuals

by Gramm–Schmidt:

ek+1 = rk −
eTk Ark−1
eTk Aek

so that rk+1 = b−Ax̂k+1 = rk − αk+1Aek+1

After N steps, the A-conjugate basis of RN is done and the exact solution
is reached:

x =

N∑
j=1

αjx̂
j

For any k, the speed of convergence is bounded by

O

(
1−

√
C(A)

1 +
√
C(A)

)2k

in the norm induced by A, with C(A) the conditioning of A.

The Conjugate Gradient can therefore be seen as a direct methods but in
practice:

• the iterative computation of the A-conjugate basis suffers from the same
issue of numerical error propagation as the QR factorization leading to a
loss of orthogonality,

• the convergence is slow, which makes it unrealistic to compute the exact
solution for large systems,

6

so it is used as an iterative method.

Example algorithm on first steps:

1. Given x̂0 = 0, set r0 = b−Ax̂0 and e1 = r0,

2. Take x̂1 = α1e1, then α1e
T
1 Ae1 = eT1 b, thus

α1 =
rT0 b

rT0 Ar0

3. Compute the residual:
r1 = b−Ax̂1

4. Compute the direction:

e2 = r1 −
eT1 Ar0
eT1 Ae1

5. Compute the factor:

α2 =
eT2 b

eT2 Ae2

6. Update the solution:
x̂2 = x̂1 + α2e2

7. . . .

The algorithm iteration reads:

1. Compute the residual:
rk = b−Ax̂k

2. Compute the direction:

ek+1 = rk −
eTk Ark−1
eTk Aek

3. Compute the factor:

αk+1 =
eTk+1b

eTk+1Aek+1

4. Update the solution:

x̂k+1 = x̂k + αk+1ek+1

which requires two matrix-vector multiplications per loop, Ax̂k then Aek+1

Using rk+1 = rk − αk+1Aek+1 saves one matrix-vector multiplication.

While the residual norm %k = ‖rk‖2 is big:

7

1. Compute the projection:

βk = − %k
%k−1

2. Compute the direction:

ek+1 = rk + βkek

3. Compute the factor:

w = Aek+1;αk+1 =
%k

eTk+1w

4. Update the solution:

x̂k+1 = x̂k + αk+1ek+1

5. Update the residual:
rk+1 = rk − αk+1w

0.3.3 Preconditioners

While seeing the Conjugate Gradient as a pure iterative method relieves from
concerns regarding orthogonality loss, the convergence is still slow as soon as
the condition number of the matrix is bad.

Preconditioning the system consists in finding a non-singular symmetrix ma-
trix C such that Ã = C−1AC−1 and the conjugate gradient is applied to

Ãx̃ = b̃

with x̃ = C−1x and b̃ = C−1b.

With:

• M = C2

• ek = C−1ẽk

• x̂k = C−1 ˜̂xk

• zk = C−1r̃k

• rk = Cr̃k = b−Ax̂k

and M is a symmetric positive definite matrix called the preconditioner.

While the residual norm %k = ‖rk‖2 is big:

1. Solve:
Mzk = rk

8

2. Compute the projection:

βk = − zTk rk
zTk−1rk−1

3. Compute the direction:

ek+1 = zk + βkek

4. Compute the factor:

αk+1 =
zTk rk

eTk+1Aek+1

5. Update the solution:

x̂k+1 = x̂k + αk+1ek+1

6. Update the residual:
rk+1 = rk − αk+1w

The linear system Mzk = rk should be easy to solve and can lead to fast
convergence, typically O (()

√
N). Since

Mzk = b−Ax̂k

Then an iterative relation appears:

x̂k+1 = M−1
(
b−Ax̂k

)
therefore iterative methods like Jacobi, Gauss-Seidel and relaxation methods
can be used.

0.4 Power method

This method is used for finding the dominant eigenvalues of a matrix A ∈
MN (R) of N eigenvectors

(
vi
)

with associated eigenvalues
(
λi
)

ordered in de-
creasing module. The eigenvalues are either real or conjugate complex pairs.

Given a random vector x0, construct a sequence of vectors
(
x̂k
)

such that

x̂k+1 = Ax̂k

then ∀k ≥ 0

x̂k =

N−1∑
i=0

λki ξivi

for some coefficients
(
vi
)
.

9

Assume that λ0 is a dominant real eigenvalue and ξ0 6= 0, then

x̂k = λk0
(
ξ0v0 + rk

)
with the residual rk defined as

rk = λ−k0

N−1∑
i=1

λki ξivi

and limk→∞ rk = ORN . To the limit x̂k+1 ≈ λ0x̂
k ≈ λ0ξ0v0 almost parallel to

the first eigenvector.

• This method is fast to compute the spectral radius for the Jacobi method
and relaxation parameters.

• The convergence is geometric and the speed depends on the ratio |λ1/λ0|.

• If the matrix is symmetric, the convergence speed can be doubled.

• If λ0 is very large or very small then taking high powers lead to numerical
issues, the algorithm requires a normalization.

10

