Problem 1 Let

$$
X=\left\{x=(x(n))_{n=1}^{\infty}: \sum_{n=1}^{\infty} n|x(n)|^{2}<\infty\right\} .
$$

Show that X is a dense subspace of $\ell^{2}(\mathbb{N})$. Is X closed?

Problem 2 Consider the functional φ acting on sequences $x=(x(n))_{n=1}^{\infty}$, given by

$$
\varphi(x)=\sum_{n=1}^{\infty} \frac{x(n)}{\sqrt{n}}
$$

For which $p, 1 \leq p \leq \infty$, is $\varphi: \ell^{p}(\mathbb{N}) \rightarrow \mathbb{C}$ continuous? When continuous, what is the norm of φ ?

Problem 3 Let X be a Banach space, and let $x^{*} \in X^{*}$. Assume that $\left(x_{n}^{*}\right)_{n=1}^{\infty} \subset$ X^{*} is a sequence such that $\sup _{n}\left\|x_{n}^{*}\right\|<\infty$ and suppose that there exists a dense subspace $D \subset X$ such that $x_{n}^{*}(x) \rightarrow x^{*}(x)$ for every $x \in D$. Prove that $\left(x_{n}^{*}\right)_{n=1}^{\infty}$ converges weak-star to x^{*}.

Problem 4 Let X be a reflexive Banach space, and let Y be a subspace of X. Show that $\left(Y^{\perp}\right)^{\perp}$ coincides with the closure of Y in X.

Problem 5 Let X be a reflexive Banach space. A sequence $\left(T_{n}\right)_{n=1}^{\infty}$ of bounded operators $T_{n}: X \rightarrow X$ is said to converge in the weak operator topology if

$$
\lim _{n \rightarrow \infty} x^{*}\left(T_{n} x\right)
$$

exists for every $x \in X$ and $x^{*} \in X^{*}$. Show that there exists a bounded operator $T: X \rightarrow X$ such that $T_{n} x \rightarrow T x$ weakly for every $x \in X$.

Problem 6 Let X be a topological vector space.
a) Given an open neighbourhood U of the origin, show that there is an open neighbourhood V of the origin such that $V+V \subset U$.
b) Suppose that $F \subset X$ is a closed subset of X, and that $x \notin F$. Show that there are disjoint open sets O_{1} and O_{2} such that $x \in O_{1}$ and $F \subset O_{2}$.

Problem 7

a) State the open mapping theorem and the closed graph theorem.
b) Prove that the open mapping theorem implies the closed graph theorem.

Problem 8 Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in $C([0,1])$.
a) Prove that $f_{n} \rightarrow 0$ weakly if and only if the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ is bounded and $f_{n}(s) \rightarrow 0$ for every $s \in[0,1]$.
b) Give an example of a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ which tends weakly to 0 , but which is not norm-convergent.

Problem 9 Suppose that $K \in C\left([0,1]^{2}\right)$, and consider the corresponding integral operator,

$$
T f(x)=\int_{0}^{1} K(x, y) f(y) d y
$$

Prove that $T: C([0,1]) \rightarrow C([0,1])$ is compact.
Hint: By the Stone-Weierstrass theorem, $K(x, y)$ can be approximated uniformly on $[0,1]^{2}$ by a sequence $\left(p_{n}\right)_{n=1}^{\infty}$ of polynomials $p_{n}(x, y)$.

Problem 10 Define a kernel on $[0,1]^{2}$ by

$$
K(x, y)=\left\{\begin{array}{l}
(x-1) y \text { if } y \leq x \\
x(y-1) \text { if } y>x
\end{array}\right.
$$

and consider the corresponding integral operator,

$$
T f(x)=\int_{0}^{1} K(x, y) f(y) d y .
$$

Show that $T: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ is compact and symmetric, and compute its spectrum $\sigma(T)$.

