

TMA4230 Functional Analysis Spring 2023

Practice Exam Questions

- 1 Let X and Y be Banach spaces. Suppose that $T: X \to Y$ is a bounded linear operator whose range ran T is dense in Y. Prove that $T^*: Y^* \to X^*$ is injective.
- 2 Let X be a Banach space and let $T: X \to X$ be a bounded linear operator. Suppose that $T^n = 0$ for some positive integer n. Prove that I T is invertible and that

$$(I - T)^{-1} = \sum_{k=0}^{n-1} T^k.$$

- 3 Let X be a topological vector space, and let Y be a closed subspace of X. Prove that the quotient space X/Y, equipped with the quotient topology, is a topological vector space.
- 4 Let X be a Banach space. Prove that $\mathcal{L}(X)$, the space of all bounded linear operators on X, is also a Banach space.
- **5** Let X be a Banach space, and let $T: X \to X$ be a bounded linear operator. Prove that if $T^2 = T$ and $T \neq 0$, then $||T|| \ge 1$.
- **6** Let X be a reflexive Banach space, and let T be a bounded linear operator on X. Prove that T is compact if and only if it maps every weakly convergent sequence $(x_n)_{n=1}^{\infty}$ into a norm-convergent sequence $(Tx_n)_{n=1}^{\infty}$.
- 7 In a Hilbert space H, suppose that $x_n \to x$ in the weak topology, and that $||x_n|| \to ||x||$. Prove that $x_n \to x$ in the norm topology of H.

8 Let $K \in C([0,1] \times [0,1])$, and let T be the corresponding integral operator,

$$Tf(x) = \int_0^1 K(x, y) f(y) \, dy.$$

Prove that $T \colon L^1([0,1]) \to C([0,1])$ is bounded with norm

$$||T|| = \sup_{x,y \in [0,1]} |K(x,y)|.$$

9 Let $T: L^2([0,1]) \to L^2([0,1])$ be the integral operator

$$Tf(x) = \int_0^1 \min\{x, y\} f(y) \, dy.$$

Show that T is compact and self-adjoint, and find the spectrum $\sigma(T)$ of T.