TMA 4230 - PROBLEMS, 2015

Problem 1: Let (X, dx) and (Y,dy) be two metric spaces. Then a function f : X — Y is
called a homeomorphism if it is a continuous bijection with a continuous inverse
7% In this case one says that (X, dx) and (Y, dy) are homeomorphic.
(a) Suppose a, b are finite real numbers. Show that (0,1) is homeomorphic to
(a,b).
(b) Show that R is homeomorphic to (0, 1).
(c¢) Give an example that shows that completeness is not preserved under a
homeomorphism.
(d) Show that the notion of a Cauchy sequence is not a topologcial property.
Problem 2: Let X be the set with two points, {a, b}, with the indiscrete topology. Given
an example of a sequence that does not have a unique limit.
Problem 3: Let X be a topological space and S a subset of X. Show that

S = S U {limit points}.

Furthermore, show that if a sequence (x;); in S converges in X, then its limit
is actually in the closure of S.

Problem 4: Let ¢! be the space of absolutely convergent sequences (x;), i.e. |[(z:)]1 =
Yozl < oo. We define e, = (0,...,0,1,0,...) to be the sequence which is
1 in the n-th coordinate and 0 elsewhere. Show that the set {e, : n € N} is
bounded but that it is not totally bounded in ¢*.

Problem 5: Let [a,b] be a closed interval in R. Show using the definition of compactness in
terms of open covers that [a, b] is compact.

Problem 6: Let X be a topological space and S a subset of X. Show the following statemens:

(a) If X is compact and S is closed in X, then S is compact.
(b) If X is Hausdorff and S is compact, then S is closed in X.

Problem 7: Prove the following assertions:

(a) Let f be a continuous mapping between two topological spaces X and Y.
If X is compact, then f(X) is compact in Y.

(b) Let f be continuous mapping between a compact space and R. Then f(X)
is contained in some interval [a, b] for finite reals a, b.

(¢) Compactness is a topological property.

Problem 8: The Cantor set C is defined as C = N7, where I,,;; is constructed by trisect-
ing I,, and removing the middle third, Iy being the closed interval [0, 1]. Show
that C has the following properties:

(a) C is non-empty and uncountable.
(b) C is closed and its complement is dense.

Problem 9: Let X be the normed space (C0,1],.][1), where C[0, 1] is the set of all real-
valued continuous functions on [0, 1] and || f||; = fol |f(t)|dt. Show that (C|0, 1], ||.||1)
is not complete.
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(One-point compactification)

Let X be a Hausdorff space. Then the one-point compactification of X is the
space Y = X U {yo} for some point yo not in X with the following open sets:

() U C X C Y for any open set U C X, (o) {yo} U (X\K) for any compact

set K of X.

(a) Show that Y with the above mentioned open sets is a topological space.

(b) Show that Y is compact.

(c) Show that Y is Hausdorff if and only if X is locally compact. Recall: A
topological space X is called locally compact at a point x € X, if x has
a compact neighborhood, and X is called locally compact if it is locally
compact at every point.

Let (X,d) be a complete metric space and A a subset of X. Show that (A, d)
is complete if and only if A is closed in X with respect to the metric topology.

(Completions of metric spaces) A completion of a metric space (X, d) is a com-

plete metric space (X,d) and an isometry i : X — X such that the image i(X)
is dense in X.

Show the following assertions, which will demonstrate that each metric space
has a unique completion:

(a) Consider the set of all Cauchy sequences in X. We define two Cauchy
sequences = = (xy)r and x = (xy)x to be equivalent, if d(z,y) converges to
0. Show that this defines an equivalence relation.

(b) Let X be the set of equivalence classes on the set of Cauchy sequences.
Denote by [z] the equivalence class of [x = (z)]. Define a metric on X by
d([z], [y]) := limy, d(zx, yx,). Show that d is well-defined and a metric on X.

(¢) Show that there is an isometry i : X — X such that i(X) is dense in X.

(d) Suppose a metric space (X, d) has two completions, ()N(, d) and ()/5, @, ie.
there exist isometries i : X — X and j : X — X. Show that there exists
a unique bijective isometry k : X — X such that koi = 7.

Show that the set of bounded sequences ¢*° with the sup-norm ||z||g = supy, |z|

is a Banach space and that it is not separable.

Let f be a real-valued function on a vector space X. Assume that f satisfies

(i) f(z) >0 for all x € X, and (ii) f(Az) = |\|f(z) for A € R. Show:

(a) If f is convex, then the triangle inequality is satisfied and x — f(z) defines
a norm on X.

(b) If the sublevel set {z € X : f(x) <1} is convex, then f is a norm on V.

Suppose (X, d) is a complete metric space.

If a set in X is a countable intersection of open sets, then one calls it a Ggs-

set. Make sure that you understand that all open sets are Ggs-sets, but not all

Gs-sets are open.

Suppose (G,)5%, is a sequences of dense Gg-sets in X. Then N>, G, is also a

dense Gg-set.

Show that for a function f : R — R the points of continuity of f form a Gs-set.

Use the following notion: For any open interval I in R, let the oscillation of f
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over I be given by
oscy(f) == sup{|f(x) = f(y)| - [z,y] C I}

Try to understand why this definition makes sense and then consider a sequence
of positive real numbers ¢ — 0 as n — oo and define sets

= {z € R : There exists an open interval I in R s.t. x € I & osc;(f) < €, }.

Define a function f: R — R by f(z) = 0 for all non-zero = not in Q, f(0) =1
and f(z) = 1/q for all non-zero x in Q where x = p/q is written in lowest terms.
(a) Show that the previous result on the set of continuity points applied to the
function f implies that R\Q is a Gs-set.
(b) Show that there exists no function that has Q as the set of points of con-
tinuity.
(Some variations on Banach-Steinhaus) Let X and Y be Banach spaces and
(T)n a sequence in B(X,Y). Suppose that lim, T,z exists for each z € X.
Show that
(a) sup, |1, < occ.
(b) Define the operator Tx := lim,, T,,x for all x € X. Then T is a bounded
linear operator.
Let X and Y be Banach spaces and (T,), a uniformly bounded sequence in
B(X,Y). Show that the set V = {z € X : limT,x exists} is a closed linear
subspace of X.
Let f be a function from [0, 1] to [0,1] with closed graph. Show that f is
continuous on [0, 1].
Let X be a Banach space that contains a dense subspace V' which is a Gs-set.
Show that V = X.
Let X and Y be Banach spaces. Show that any bounded open map between
X and Y may be written as T' = T o ), where @ is the quotient map from X
onto X/ker(T) and Tj is an isomorphism between X /ker(T') and Y.
Find a sequence ¢ = (¢,), in > such that
lim |lc — ¢™ || = lim sup|e| # 0,
where ™ = (c1,...,¢,,0,0,...).
Let X and Y be normed spaces and 7" a bounded operator from X to Y. Show
that T**(z) = T'(x) for all x € X.
Let X be a Banach space and j the natural embedding of X into X" . Show
that j(X) is closed.
Let F be a subset of a Hilbert space H. Show that its orthogonal complement
E* is a closed linear subspace of H.
Let E be a closed subspace of a normed space X. Show the following: If £ and
X/FE are both complete, then X must be a Banach space.
Let X be a normed linear space. Prove the following: If F is a closed subspace of

X and F'is a finite-dimensional subspace of X, then F + F'is a closed subspace
of X.
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Let E be a closed subspace of a normed space X. Show the following assertions:

(a) If X is separable, then X/F is separable.

(b) If E and X/FE are both separable, then X is separable.

Let X =7 for p € [1,00]. Then E = {c = (¢x) € P : c9, =0 for all k € N} is

a closed subspace of # with codim(FE) = oo, /P =2 E and P/ E = (P.

Let ¢y be the closed subspace of sequences converging to zero in £*°. Suppose

S ={(c) € £>: ¢, €{0,1}}. Show the following assertions:

(a) Let ¢,d be elements of S. Suppose ¢, # dj for at most finitely many k.
Then ¢+ ¢y = d + ¢y.

(b) Let ¢,d be elements of S. Suppose ¢, # dj, for infinitely many k. Then
||C— d+Co|| =1.

(c) Use (b) to show that £°°/cy is not separable.

Prove that each Hilbert space has an orthonormal basis by the use of Zorn’s

lemma.

Let X and Y be normed spaces and T" a bounded linear operator from X to

Y. If a sequence {z,} in X converges weakly to z in X, show that T'z,, — Tx

weakly.

Let E be a convex subspace of a normed space X. Then show that the weak

closure E is the same as the strong closure E.

Suppose {z,} converges weakly to x in a normed space X. Show that there is

a sequence {Z,,} of linear combinations of {x, } which converges strongly to x.

(Hint: Apply the preceding result to span(zx,)).

A weak Cauchy sequence in a normed space X is a sequence {x,} such that

{2/(z,)} is a Cauchy sequence for all ' € X’. Show that a weak Cauchy

sequence is bounded.

A normed space X is weakly complete if each weak Cauchy sequence in X

converges weakly in X. Suppose that X is relfexive. Show that X is weakly

complete.

Let ¢y be the space of sequences converging to zero. Show that the continuous

linear functionals on ¢y may be identified with ¢

Let X be a normed space and S a dense subset of X’. Then (zy) converges

weakly to x if and only if f(xy) — f(x) for all f € S and (x}) is bounded.

Show that weak-convergence of a sequence of functionals (f;) in X’ implies

weak-* convergence in X’. (Contemplate over the definitions of these two

topologies and which sets of functionals are used to test convergence.)

Let X and Y be normed spaces and 1" a bounded linear operator between X

and Y. Show the following: (i) 7" is compact if and only if every bounded

sequence in X is map onto a sequence with a convergent subsequence. (ii) If

T is compact, then every weakly convergent sequence z,, — x is map onto a

strongly convergent one Tz, — Tx.

Let X be a Banach space and (xj) a Schauder basis for X. Show that X is

separable and that the associated sequence space E := {a = (ax) : >, axzry <

oo} is a Banach space with respect to ||al|g := sup,, || Y_r_; axxi]|-



Problem 43: Show that a subset S C c¢q is precompact if and only if there exists a b € ¢g
such that for all a € S one has |ay| < by for all k£ € N,



