TMA 4230 - PROBLEMS, 2015

Problem 1: Let (X, dx) and (Y,dy) be two metric spaces. Then a function f : X — Y is
called a homeomorphism if it is a continuous bijection with a continuous inverse
7% In this case one says that (X, dx) and (Y, dy) are homeomorphic.
(a) Suppose a, b are finite real numbers. Show that (0,1) is homeomorphic to
(a,b).
(b) Show that R is homeomorphic to (0, 1).
(c¢) Give an example that shows that completeness is not preserved under a
homeomorphism.
(d) Show that the notion of a Cauchy sequence is not a topologcial property.
Problem 2: Let X be the set with two points, {a, b}, with the indiscrete topology. Given
an example of a sequence that does not have a unique limit.
Problem 3: Let X be a topological space and S a subset of X. Show that

S = S U {limit points}.

Furthermore, show that if a sequence (x;); in S converges in X, then its limit
is actually in the closure of S.

Problem 4: Let ¢! be the space of absolutely convergent sequences (x;), i.e. |[(z:)]1 =
Yozl < oo. We define e, = (0,...,0,1,0,...) to be the sequence which is
1 in the n-th coordinate and 0 elsewhere. Show that the set {e, : n € N} is
bounded but that it is not totally bounded in ¢*.

Problem 5: Let [a,b] be a closed interval in R. Show using the definition of compactness in
terms of open covers that [a, b] is compact.

Problem 6: Let X be a topological space and S a subset of X. Show the following statemens:

(a) If X is compact and S is closed in X, then S is compact.
(b) If X is Hausdorff and S is compact, then S is closed in X.

Problem 7: Prove the following assertions:

(a) Let f be a continuous mapping between two topological spaces X and Y.
If X is compact, then f(X) is compact in Y.

(b) Let f be continuous mapping between a compact space and R. Then f(X)
is contained in some interval [a, b] for finite reals a, b.

(¢) Compactness is a topological property.

Problem 8: The Cantor set C is defined as C = N7, where I,,;; is constructed by trisect-
ing I,, and removing the middle third, Iy being the closed interval [0, 1]. Show
that C has the following properties:

(a) C is non-empty and uncountable.
(b) C is closed and its complement is dense.

Problem 9: Let X be the normed space (C0,1],.][1), where C[0, 1] is the set of all real-
valued continuous functions on [0, 1] and || f||; = fol |f(t)|dt. Show that (C|0, 1], ||.||1)
is not complete.



Problem 10:

Problem 11:

Problem 12:

Problem 13:

Problem 14:

Problem 15:

(1)

(2)

Problem 16:

(One-point compactification)

Let X be a Hausdorff space. Then the one-point compactification of X is the
space Y = X U {yo} for some point yo not in X with the following open sets:

() U C X C Y for any open set U C X, (o) {yo} U (X\K) for any compact

set K of X.

(a) Show that Y with the above mentioned open sets is a topological space.

(b) Show that Y is compact.

(c) Show that Y is Hausdorff if and only if X is locally compact. Recall: A
topological space X is called locally compact at a point x € X, if x has
a compact neighborhood, and X is called locally compact if it is locally
compact at every point.

Let (X,d) be a complete metric space and A a subset of X. Show that (A, d)
is complete if and only if A is closed in X with respect to the metric topology.

(Completions of metric spaces) A completion of a metric space (X, d) is a com-

plete metric space (X,d) and an isometry i : X — X such that the image i(X)
is dense in X.

Show the following assertions, which will demonstrate that each metric space
has a unique completion:

(a) Consider the set of all Cauchy sequences in X. We define two Cauchy
sequences = = (xy)r and x = (xy)x to be equivalent, if d(z,y) converges to
0. Show that this defines an equivalence relation.

(b) Let X be the set of equivalence classes on the set of Cauchy sequences.
Denote by [z] the equivalence class of [x = (z)]. Define a metric on X by
d([z], [y]) := limy, d(zx, yx,). Show that d is well-defined and a metric on X.

(¢) Show that there is an isometry i : X — X such that i(X) is dense in X.

(d) Suppose a metric space (X, d) has two completions, ()N(, d) and ()/5, @, ie.
there exist isometries i : X — X and j : X — X. Show that there exists
a unique bijective isometry k : X — X such that koi = 7.

Show that the set of bounded sequences ¢*° with the sup-norm ||z||g = supy, |z|

is a Banach space and that it is not separable.

Let f be a real-valued function on a vector space X. Assume that f satisfies

(i) f(z) >0 for all x € X, and (ii) f(Az) = |\|f(z) for A € R. Show:

(a) If f is convex, then the triangle inequality is satisfied and x — f(z) defines
a norm on X.

(b) If the sublevel set {z € X : f(x) <1} is convex, then f is a norm on V.

Suppose (X, d) is a complete metric space.

If a set in X is a countable intersection of open sets, then one calls it a Ggs-

set. Make sure that you understand that all open sets are Ggs-sets, but not all

Gs-sets are open.

Suppose (G,)5%, is a sequences of dense Gg-sets in X. Then N>, G, is also a

dense Gg-set.

Show that for a function f : R — R the points of continuity of f form a Gs-set.

Use the following notion: For any open interval I in R, let the oscillation of f
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over I be given by
oscr(f) := sup{[f(x) — f(y)] : [z, y] C T}

Try to understand why this definition makes sense and then consider a sequence
of positive real numbers € — 0 as n — oo and define sets

= {z € R : There exists an open interval I in R s.t. x € I & osc/(f) < €, }.

Define a function f: R — R by f(z) = 0 for all non-zero = not in Q, f(0) =1

and f(z) = 1/q for all non-zero x in Q where x = p/q is written in lowest terms.

(a) Show that the previous result on the set of continuity points applied to the
function f implies that R\Q is a Gs-set.

(b) Show that there exists no function that has Q as the set of points of con-
tinuity.

(Some variations on Banach-Steinhaus) Let X and Y be Banach spaces and

(T,)n a sequence in B(X,Y). Suppose that lim, T,z exists for each z € X.

Show that

(a) sup, [[T]| < o0

(b) Define the operator Tx := lim,, T,,x for all x € X. Then T is a bounded
linear operator.

Let X and Y be Banach spaces and (7,), a sequence in B(X,Y). Show that

the set V = {x € X : lim T,z exists} is a closed linear subspace of X.

Let f be a function from [0, 1] to [0,1] with closed graph. Show that f is

continuous on [0, 1].

Let X be a Banach space that contains a dense subspace V' which is a Gs-set.

Show that V' = X.

Let X and Y be Banach spaces. Show that any bounded open map between

X and Y may be written as T' = T o ), where @ is the quotient map from X

onto X/ker(T') and Tj is an isomorphism between /ker(7T) and Y.

Find a sequence a = (ay), in £*° such that

lim |lc — ¢™ || = lim sup|c| # 0,
where ™ = (c1, ..., ¢,,0,0,...).

Let X and Y be normed spaces and T a bounded operator from X to Y. Show
that T**(xz) = T'(z) for all z € X.



