Let \(\lambda \in \mathbb{C} \) and \(\lambda_1, \ldots, \lambda_k \) the roots of the polynomial \(p(x) \), i.e., \(p(x) - \lambda = \alpha(x - \lambda_1) \cdots (x - \lambda_k) \), so that \(p(\lambda) = 0 \) is inscribed if and only if \(\lambda - \lambda_i \) is inscribed for all \(i \).

That is \(\lambda \in \sigma(p(\lambda)) \Longleftrightarrow \lambda \in \sigma(A) \) for all \(i \) \(\Rightarrow \lambda \notin p(\sigma(A)) \)

(since \(p(\lambda) = 0 \) for all \(i \)).

7.1.15

\[
\begin{align*}
\mathbb{X} & = \{ \text{polynomials } x(t) = a_0 + a_1 t + \ldots + a_m t^{m-1} \} \\
T : \mathbb{X} & \rightarrow \mathbb{X}, \quad (Tx)(t) = x'(t) = a_1 t + 2a_2 t^2 + \ldots + (m-1)a_{m-1} t^{m-2}
\end{align*}
\]

Clearly \((Tx)(t) = x'(t) \Rightarrow \lambda x(t) \quad \Rightarrow \lambda = 0 \) and \(x(t) = a_0 \) for some constant.

Hence 0 is an eigenvalue of algebraic multiplicity \(m \), and geometric multiplicity 1 (the eigenspace \(\mathcal{E}_0 \) corresponding to \(\lambda = 0 \) is 1-dimensional, consisting of the constant functions).

7.2.3

Suppose \(\lambda \) is an eigenvalue of \(T \) and \(\mathcal{E}_\lambda \) the corresponding eigenspace.

Let \(0 \neq x \in \mathcal{E}_\lambda \), then \(Tx \in \mathcal{E}_\lambda \) also as \(Tx = \lambda x \) and \(T(\lambda x) = \lambda (\lambda x) \).

Example from last exercise: \(T \{ \text{constant functions} \} = \{ \text{constant functions} \} \).

7.2.6

Suppose \(T_1 \) is an extension of \(T \), i.e., \(D(T) \subset D(T_1) \) and \(T_1 x = T x \) for all \(x \in D(T) \). Let \(\lambda \in \sigma(p(T)) \), then there exists \(0 \neq x \in D(T) \) such that \(T x = \lambda x \), but then \(T_1 x = T x = \lambda x \) also, so \(\lambda \in \sigma(T_1) \). Let \(\mathcal{E}_\lambda \) be the eigenspace corresponding to the eigenvalue \(\lambda \) of \(T \), and \(\mathcal{E}_{\lambda}' \) similar for \(T_1 \).

Suppose \(x \in \mathcal{E}_\lambda \), i.e., \(T x = \lambda x \), then \(T_1 x = T x = \lambda x \), so \(x \in \mathcal{E}_{\lambda}' \) also.
Let \(\text{PWLC}[a,b] \) be the space of piecewise linear continuous functions on \([a,b]\). Clearly \(f, g \) are both in \(\text{PWLC}[a,b] \), if \(f \) and \(g \) do. For example, not that elements \(f \in \text{PWLC}[a,b] \) are defined by their values on a finite set of points \(\{ a \leq x_0 < x_1 < \cdots < x_n < b \} \). Thus \(f, g \) can be constructed from a finite set of points corresponding to \(f, g \) and the points of intersection.

Moreover, for each \(h \in \text{C}[a,b] \) and \(a \leq x_1 < x_2 \leq b \), there exists a linear function \(f \in \text{PWLC}[a,b] \) s.t. \(f(x_1) = h(x_1), f(x_2) = h(x_2) \),

By applying Lemma 2 of the Stone-Weierstrass Theorem, note, for all \(\varepsilon > 0 \), there exists \(g \in \text{PWLC}[a,b] \) s.t. \(\|f - g\|_{\infty} < \varepsilon \).