Consider the map \(f_2 : (l^2)^4 \to l^2 \) given by \(\mathbf{x} \mapsto f_2(\mathbf{x}) = \langle x, z \rangle \)

Linearity:
\[
\langle f_2(x), \beta \rangle = \langle x, \beta \rangle = \langle x, z \rangle + \langle \alpha, z \rangle = \langle f_2(x), \alpha \rangle + \langle f_2(x), \beta \rangle
\]

Isometry:
\[
\| f_2 \| = \sup_{\| x \|_2 = 1} \langle f_2(x), 1 \rangle \leq \sup_{\| x \|_2 = 1} \| x \|_2 = 1 \| x \|_2 = 1 \| x \|_2 = 1
\]

Injective:
By Riesz's theorem, for every \(f_2 \in (l^2)^4 \), there exists a unique \(z \in l^2 \) such that \(f_2(x) = \langle x, z \rangle \) for all \(x \in l^2 \). (Injection follows from isometry)

3.8.6 Consider the map \(H \mapsto H^* \) given by \(\mathbf{x} \mapsto f_2(\mathbf{x}) = \langle x, z \rangle \)

Linearity:
\[
\langle f_2(x), \beta \rangle = \langle x, \beta \rangle = \langle x, z \rangle + \langle \alpha, z \rangle = \langle f_2(x), \alpha \rangle + \langle f_2(x), \beta \rangle
\]

Isometry:
\[
\| f_2 \| = \sup_{\| x \|_2 = 1} \langle f_2(x), 1 \rangle \leq \sup_{\| x \|_2 = 1} \| x \|_2 = 1 \| x \|_2 = 1
\]

Injective:
By Riesz's theorem and isometry from the fact that \(H^* \) is an isometry.

3.8.8 Define \(T : H \to H^* \) and \(S : H^* \to H^* \) by \(\mathbf{x} \mapsto f_2(\mathbf{x}) \)

Then \(ST \) is linear as \(ST(\mathbf{x}, \beta) = S(\mathbf{x}, T \beta) = \alpha \mathbf{f}_2 + \beta S \mathbf{f}_2 \)

Since \(S \) and \(T \) are bijective isometries, so is \(ST \) \((\| ST \| = \| ST \| = 1) \)

Note that \(\mathbf{f}_2(\mathbf{f}_2) = \langle \mathbf{f}_2, \mathbf{f}_2 \rangle = \langle \mathbf{2}, \mathbf{2} \rangle = \mathbf{2} \), so every \(\mathbf{x} \in H^* \)

is given by evaluation, i.e., \(\mathbf{f}(\mathbf{x}) = \mathbf{f}(z) \) for some \(z \in H \), and \(ST \)

is the map \(\mathbf{x} \mapsto \mathbf{x} \).

Moreover \(\langle \mathbf{x}, \mathbf{f}_2 \rangle = \langle \mathbf{f}_2, \mathbf{f}_2 \rangle \).

Remark
\(H \) and \(H^* \) are anti-symmetric as Hilbert spaces, but isomorphic as Banach spaces.

3.9.3 Since \(\| ST \| = \| ST \| \) for all \(\mathbf{f} \in \mathcal{B}(H) \), for all \(\mathbf{x} \in H \) and \(N \in \mathbb{N} \),

\[
\| T^{-N} - T_+^{-N} \| = \| (T - T_+) \| \leq E \quad \text{for all } N \in \mathbb{N},
\]

i.e., \(T^{-N} \to T \).
3.9.10

Define \(T(x_1, x_2, \ldots) = (c, x_1, x_2, \ldots) \)

Clearly \(\text{ran}(T) = \{x \in H \mid x_i = 0 \} \) and \(\ker(T) = \{0\} \)

Moreover, \(\|T x \|_1^2 = \sum_i |<Tx, e_i>|^2 = \sum_i |x_i|^2 = \sum_i |e_i|^2 = 1 = \|x\|_1^2 \)

by Parseval, so \(\|T\| = 1 \)

Furthermore, \(<Tx, e_n> = <x, T^* e_n> \Rightarrow \sum_i <Tx, e_i> e_i \equiv \sum_i <x, e_i> e_i, T^* e_n \)

so that \(x_n = \sum_i X_i (T^* e_n) \). For \(n \geq 2 \), hence \(T^* e_n = e_{n-1} \)

Also \(0 = <Tx, e_1> = <x, T^* e_1> = r + T^* e_0 = 0 \)

We then have that \(T^* (x_1, x_2, \ldots) = (x_1, x_2, \ldots) \).

Note that \(T^* T = I \), but \(TT^* \neq I \).

Extra

Let \(w \in C[a, b] \), then

\[\text{Var}(w) = \frac{\sum_i |w(t_i) - w(t_{i-1})|}{\sum_i |w(t_i) - w(t_{i-1})|} \geq \frac{\sum_i |w(t_i) - w(t_{i-1})|}{\sum_i |t_i - t_{i-1}|} \in \mathbb{N} \]

Here we apply the mean value theorem: there exists \(c_i \in (t_{i-1}, t_i) \) such that \(w'(c_i) = \frac{w(t_i) - w(t_{i-1})}{t_i - t_{i-1}} \).

Definition of integrals: For all \(x > 0 \), there exists \(S > 0 \) such that \(\rho_n \)

is a polynomial with \(\max |t_i - t_{i-1}| < 6 \) then

\[|\sum f(x_i)(w(x_i) - w(x_{i-1})) - \int f(w) dx| < \varepsilon \quad \text{and} \quad |\sum f(x_i)w'(x_i)(x_i - x_{i-1}) - \int f(w') dx| < \varepsilon \]

Idea: Estimate \(|\sum f(x_i)(w(x_i) - w(x_{i-1})) - \sum f(x_i)w'(x_i)(x_i - x_{i-1})| \)

By NVT there exists \(c_i \in (x_{i-1}, x_i) \) s.t. \(w(x_i) - w(x_{i-1}) = w'(c_i)(x_i - x_{i-1}) \)

and by continuity of \(w' \) the \(w'(c_i) \)'s will be 'close' to the \(w'(x_i) \)'s.

Indeed, for each \(\varepsilon > 0 \) there exists \(\delta > 0 \) s.t.

\[|w'(x) - w'(c_i)| < \varepsilon \text{ whenever \(|x_i - c_i| < \delta \)} \]

Thus for each \(\varepsilon > 0 \), we can pick a \(\delta > 0 \) s.t. (pick \(\delta = \min \{\delta_1, \delta_2\} \))

\[|\sum f(x_i)(w(x_i) - w(x_{i-1})) - \sum f(x_i)w'(x_i)(x_i - x_{i-1})| < \varepsilon \]

\[\leq \|f\|_1 \cdot \varepsilon \sum |x_i - x_{i-1}| + 2\varepsilon = ((b-a)\|f\|_1 + 2)\varepsilon \]

Hence \(\int f dw = \int f w'dx \)