9.8.1 Define \(F_x = \lim_{\mu \to x} E_{\mu} \) (note that this limit exists by Thm 9.6.3 regarding monotone sequence of projections), then \(\lambda \mu n \) implies that \(E_{\lambda} \leq E_{\mu} \), so \(E_{\lambda^n} \leq E_{\mu^n} \) for all \(n \), i.e., \(E_{\lambda} \leq E_{\mu} \).

9.8.2 Set \(\bar{E}_x = \lim_{\mu \to x} E_{\mu} \) (Thm 9.6.3 also gives existence of limit in the case of monotone decreasing sequences), then \(\lambda \mu n \) implies that \(E_\lambda \leq E_{\mu} \), so \(E_{\lambda^n} \leq E_{\mu^n} \) for all \(n \), i.e., \(\bar{E}_\lambda \leq \bar{E}_\mu \).

9.8.3 Let \(B = (T_3)^2 \) and \(T = \frac{1}{2} (B + T) \), \(T = \frac{1}{2} (B - T) \), and note that \(BT = TB \) (by Thm 9.14.2). Hence \(T^* T^* = T - T^* \), indeed

\[
T^* T^* = \frac{1}{4} \frac{1}{2} \left(B^2 + TB - BT - T^2 \right) = \frac{1}{4} \frac{1}{2} \left(B^2 + BT - TB - T^2 \right) = T - T^*.
\]

9.8.4 Let \(T = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \), then \(T^2 = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \) and all where \(\begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \) gives \(T^2 \) when squared, but \(B = (T_3)^2 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \) is the positive square root \((\sigma(B) = \{ 0, 3 \}). \) Moreover,

\[
T^2 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \text{ and } T^* = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}
\]

Extra 1: Let \(A = C_0(X) = \mathcal{C}^0 \left(\mathbb{R}, E_1 \right) \) and let \(x = \sum_i \frac{1}{3^n} \mu_n \)

If \(x_n = \sum_i \frac{1}{3^n} \mu_n \), then \((x_n) \) is a sequence in \(A \), since \(\| x_n - x_m \| = \| \sum_i \frac{1}{3^n} \mu_n \| \leq \sum_i \frac{1}{3^n} = \frac{1}{2} 2^n \rightarrow 0 \) as \(n \to \infty \), hence \(x \in A \) since \(A \) is complete.

Let \(x, \mu_1, \mu_2, ... \) be represented by functions \(f, \chi_1, \chi_2, \ldots \) on \(X \), where \(\chi_i \) is characteristic function on some (discrete) set \(A_i \subset X \), which is the case since \(\chi_i \) is a projection (i.e., \(\chi_i(a) = \chi_i(a) \cdot X_i(a) \) for all \(a \)).

Note that \(0 < A \) \(\Rightarrow f(a) \geq \frac{1}{2} \) and \(A \notin \mathbb{N} \) \(\Rightarrow f(a) \leq \frac{1}{2} \), so we can define a function \(g \) on \(\mathbb{R} \) \(\sigma(x) \) since \(x \) is self-adjoint, with the property that \(g = 0 \) on \([-1, 0, 0] \) and \(g \geq 0 \) on \(\left[\frac{1}{2}, 1 \right] \).
This means that $a \in A_1 \Rightarrow (g \circ f)(a) = 1$ and $a \notin A_1 \Rightarrow (g \circ f)(a) = 0$, i.e., $g \circ f : X \to Y$, hence $g \in C(X)$. (Check Murphy's book *C*-algebras and operator theory*, section 7.1, page 41-42).

Continue inductively to get that $p_1, p_2, \ldots \in C^*(X)$ also.

Extra 2: Suppose E^0 is finite, show that $\sum_{v \in E_0^*} p_v$ is a unit for $C^*(E)$.

 Obviously $p_u \sum_{v \in E_0^*} p_v = p_u^2 = p_u$ and $(\sum_{v \in E_0^*} p_v)^2 = p_u^2 = p_v$ for all $u \in E^0$.

 Moreover $(\sum_{v \in E_0^*} p_v)^* e_v = (\sum_{v \in E_0^*} p_v^*) e_v = \sum_{v \in E_0^*} p_v^* e_v = e_v$

for all $s \in E^0$, $s^* e_v = 0$ if $v \notin E$.

 and $s_e (\sum_{v \in E_0^*} p_v) = s_e s_v e_v (\sum_{v \in E_0^*} p_v) = s_e p_v(s_e) p_v(s_e) = s_e s_v s_e = s_e$