Problem 1. Let

$$
A=\bigcap_{n=1}^{\infty}\left(\bigcup_{m=1}^{\infty}\left[\frac{1}{m n+1}, \infty\right)\right) .
$$

Find $m(A)$, where m denotes the Lebesgue measure on \mathbb{R}.
Solution: Since

$$
\bigcup_{m=1}^{\infty}\left[\frac{1}{m n+1}, \infty\right)=(0, \infty)
$$

for all $n \in \mathbb{N}$, we obtain that $A=(0, \infty)$. Hence, $m(A)=\infty$.
Problem 2.
Does exist an open set $A \subset(0,1)$ with the following two properties:

1. $m(A)>0$;
2. A doesn't contain any binary rational?

Solution: There is no such a set.
Binary rationals from $(0,1)$ have the form $m / 2^{n}$, where $m, n \in \mathbb{N}$. Since A is open and $m(A)>0$, then $(a, b) \subset A$ for some $b>a$. Every such an interval contains a binary rational since binary rationals are dense in \mathbb{R}.

Problem 3.

Let

$$
f(x)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} I_{\left[m^{2}, m^{2}+3^{-(m+n)}\right]}(x) .
$$

a. Prove that f is Lebesgue measurable.
b. Find the Lebesgue integral

$$
\int_{\mathbb{R}} f(x) d x .
$$

Solution: Clearly, f is Lebesgue measurable, since it is a countable sum of unsigned simple functions. By Tonelli's theorem

$$
\int_{\mathbb{R}} f(x) d x=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{\mathbb{R}} I_{\left[m^{2}, m^{2}+3^{-(m+n)]}\right.}(x) d x=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} 3^{-(m+n)}=\sum_{m=1}^{\infty} 3^{-m} \sum_{n=1}^{\infty} 3^{-n}=1 / 4 .
$$

Problem 4. a. Find the following limit

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty}(\log x)^{n} e^{-x} d x
$$

Solution: All the functions are clearly unsigned measurable. Therefore by monotonicity of Lebesgue integral we get for each $n \in \mathbb{N}$

$$
\int_{1}^{\infty}(\log x)^{n} e^{-x} d x \geq \int_{3}^{4}(\log x)^{n} e^{-x} d x \geq(\log 3)^{n} e^{-4}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty}(\log x)^{n} e^{-x} d x=\infty
$$

b. Prove that the function

$$
f(t)=\int_{1}^{\infty} e^{-x^{3}} \cos x t d x
$$

is continuous in each point $t \in \mathbb{R}$.

Solution:

Fix $t \in \mathbb{R}$ and take any sequence t_{n} such that $\lim _{n \rightarrow \infty} t_{n}=t$. Denote

$$
f_{n}(x)=e^{-x^{3}} \cos x t_{n} .
$$

Since $\left|f_{n}(x)\right| \leq h(x)$ for all $x \in[1, \infty)$, where

$$
h(x)=e^{-x^{3}},
$$

and $h \in L_{1}([1, \infty))$, we get by Dominated Convergence Theorem that

$$
\lim _{n \rightarrow \infty} f\left(t_{n}\right)=\lim _{n \rightarrow \infty} \int_{1}^{\infty} e^{-x^{3}} \cos x t_{n} d x=\int_{\mathbb{R}} e^{-x^{3}} \cos x t d x=f(t)
$$

Since t_{n} was arbitrary, this implies continuity of f in t.
c. Find the following limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{n^{2 / 3}}(\log (1+x / n)+\log (1-x / n)) d x
$$

Solution:

All the functions are measurable since they are continuous on $\left[0, n^{2 / 3}\right]$ for $n>1$. Also we have that when $x \rightarrow 0$,

$$
\log (1+x)=x-x^{2} / 2+O\left(x^{3}\right)
$$

Therefore, uniformly for $x \in\left[0, n^{2 / 3}\right]$

$$
\log (1+x / n)+\log (1-x / n)=-(x / n)^{2}+O\left(n^{2} / n^{3}\right)
$$

Then we have for $n \rightarrow \infty$,

$$
\int_{0}^{n^{2 / 3}}(\log (1+x / n)+\log (1-x / n)) d x=\int_{0}^{n^{2 / 3}}-(x / n)^{2} d x+O\left(n^{-1 / 3}\right)=-1 / 3+O\left(n^{-1 / 3}\right)
$$

and hence

$$
\lim _{n \rightarrow \infty} \int_{0}^{n^{2 / 3}}(\log (1+x / n)+\log (1-x / n)) d x=-1 / 3
$$

Problem 5. Let

$$
f_{n}(x)=(\log (1+x / n)+\log (1-x / n)) I_{[0, n / 2]}(x)
$$

a. Find the function $g(x)$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=g(x)$ for all $x \in \mathbb{R}$.
b. Determine if $f_{n} \rightarrow g$ uniformly.
c. Determine if $f_{n} \rightarrow g$ in L_{1} or in measure.

Solution:

It is easy to see that for each fixed $x \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty}(\log (1+x / n)+\log (1-x / n)) I_{[0, n / 2]}(x)=0
$$

Therefore, $g(x)=0$. Clearly,

$$
\sup _{x \in \mathbb{R}}\left|f_{n}(x)-g(x)\right| \geq\left|f_{n}(n / 2)\right|=\log (4 / 3),
$$

so $f_{n} \rightarrow g$ not uniformly. Also for $x \in[n / 4, n / 2]$

$$
\left|f_{n}(x)\right|=\left|\log \left(1-x^{2} / n^{2}\right)\right| \geq\left|f_{n}(n / 4)\right|=\log (16 / 15)
$$

Therefore, f_{n} is not convergent in measure, and hence not in L_{1}.

Problem 6.

Let $(\mathbb{R}, \mathcal{B})$ be a measurable space, where \mathcal{B} is the Borel σ-algebra.
a. Prove that $m: \mathcal{B} \rightarrow[0,+\infty)$ that given by

$$
m(A):=\int_{A} e^{-x^{2}} d x
$$

is a measure on \mathcal{B}. Find $m(C)$, where C is the Cantor set.
b. Compute

$$
\int_{0}^{\infty} x d m
$$

Try to find the answer in a nice form.

Solution:

The fact that m is a measure easy to check by Tonelli's theorem. Also, $m(C):=\int_{C} e^{-x^{2}} d x=0$, since Lebesgue measure of C is 0 . Finally, by change of variables $u=x^{2}$

$$
\int_{0}^{\infty} x d m=\int_{0}^{\infty} x e^{-x^{2}} d x=1 / 2
$$

