Norwegian University of Science and Technology Department of Mathematical Sciences

Problem 1. Let

$$A = \bigcap_{n=1}^{\infty} \left(\bigcup_{m=1}^{\infty} \left[\frac{1}{mn+1}, \infty \right) \right).$$

Find m(A), where *m* denotes the Lebesgue measure on \mathbb{R} . Solution: Since

$$\bigcup_{m=1}^{\infty} \left[\frac{1}{mn+1}, \infty \right) = (0, \infty)$$

for all $n \in \mathbb{N}$, we obtain that $A = (0, \infty)$. Hence, $m(A) = \infty$. **Problem 2.**

Does exist an open set $A \subset (0, 1)$ with the following two properties:

1. m(A) > 0;

2. A doesn't contain any binary rational?

Solution: There is no such a set.

Binary rationals from (0,1) have the form $m/2^n$, where $m, n \in \mathbb{N}$. Since A is open and m(A) > 0, then $(a, b) \subset A$ for some b > a. Every such an interval contains a binary rational since binary rationals are dense in \mathbb{R} .

Problem 3.

Let

$$f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} I_{[m^2, m^2 + 3^{-(m+n)}]}(x).$$

a. Prove that f is Lebesgue measurable.

b. Find the Lebesgue integral

$$\int_{\mathbb{R}} f(x) dx$$

Solution: Clearly, f is Lebesgue measurable, since it is a countable sum of unsigned simple functions. By Tonelli's theorem

$$\int_{\mathbb{R}} f(x) dx = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{\mathbb{R}} I_{[m^2, m^2 + 3^{-(m+n)}]}(x) dx = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} 3^{-(m+n)} = \sum_{m=1}^{\infty} 3^{-m} \sum_{n=1}^{\infty} 3^{-n} = 1/4.$$

Problem 4. a. Find the following limit

$$\lim_{n \to \infty} \int_1^\infty (\log x)^n e^{-x} dx.$$

Solution: All the functions are clearly unsigned measurable. Therefore by monotonicity of Lebesgue integral we get for each $n \in \mathbb{N}$

$$\int_{1}^{\infty} (\log x)^{n} e^{-x} dx \ge \int_{3}^{4} (\log x)^{n} e^{-x} dx \ge (\log 3)^{n} e^{-4}.$$

Therefore,

$$\lim_{n \to \infty} \int_{1}^{\infty} (\log x)^{n} e^{-x} dx = \infty.$$

Page 1 of 3

b. Prove that the function

$$f(t) = \int_1^\infty e^{-x^3} \cos xt \, dx$$

is continuous in each point $t \in \mathbb{R}$. Solution:

Fix $t \in \mathbb{R}$ and take any sequence t_n such that $\lim_{n\to\infty} t_n = t$. Denote

$$f_n(x) = e^{-x^3} \cos x t_n$$

Since $|f_n(x)| \le h(x)$ for all $x \in [1, \infty)$, where

$$h(x) = e^{-x^3},$$

and $h \in L_1([1,\infty))$, we get by Dominated Convergence Theorem that

$$\lim_{n \to \infty} f(t_n) = \lim_{n \to \infty} \int_1^\infty e^{-x^3} \cos x t_n dx = \int_{\mathbb{R}} e^{-x^3} \cos x t dx = f(t).$$

Since t_n was arbitrary, this implies continuity of f in t.

c. Find the following limit

$$\lim_{n \to \infty} \int_0^{n^{2/3}} \left(\log(1 + x/n) + \log(1 - x/n) \right) \, dx.$$

Solution:

All the functions are measurable since they are continuous on $[0, n^{2/3}]$ for n > 1. Also we have that when $x \to 0$,

$$\log(1+x) = x - \frac{x^2}{2} + O(x^3).$$

Therefore, uniformly for $x \in [0, n^{2/3}]$

$$\log(1 + x/n) + \log(1 - x/n) = -(x/n)^2 + O(n^2/n^3).$$

Then we have for $n \to \infty$,

$$\int_0^{n^{2/3}} \left(\log(1 + x/n) + \log(1 - x/n) \right) \, dx = \int_0^{n^{2/3}} -(x/n)^2 dx + O(n^{-1/3}) = -1/3 + O(n^{-1/3}),$$

and hence

$$\lim_{n \to \infty} \int_0^{n^{2/3}} \left(\log(1 + x/n) + \log(1 - x/n) \right) \, dx = -1/3.$$

Problem 5. Let

$$f_n(x) = (\log(1 + x/n) + \log(1 - x/n)) I_{[0,n/2]}(x).$$

a. Find the function g(x) such that $\lim_{n\to\infty} f_n(x) = g(x)$ for all $x \in \mathbb{R}$.

Page 2 of 3

b. Determine if $f_n \to g$ uniformly.

c. Determine if $f_n \to g$ in L_1 or in measure.

Solution:

It is easy to see that for each fixed $x \in \mathbb{R}$

$$\lim_{n \to \infty} \left(\log(1 + x/n) + \log(1 - x/n) \right) I_{[0,n/2]}(x) = 0.$$

Therefore, g(x) = 0. Clearly,

$$\sup_{x \in \mathbb{R}} |f_n(x) - g(x)| \ge |f_n(n/2)| = \log(4/3),$$

so $f_n \to g$ not uniformly. Also for $x \in [n/4, n/2]$

$$|f_n(x)| = |\log(1 - x^2/n^2)| \ge |f_n(n/4)| = \log(16/15).$$

Therefore, f_n is not convergent in measure, and hence not in L_1 .

Problem 6.

Let $(\mathbb{R}, \mathcal{B})$ be a measurable space, where \mathcal{B} is the Borel σ -algebra. a. Prove that $m : \mathcal{B} \to [0, +\infty)$ that given by

$$m(A) := \int_A e^{-x^2} dx$$

is a measure on \mathcal{B} . Find m(C), where C is the Cantor set. b. Compute

$$\int_0^\infty x dm.$$

Try to find the answer in a nice form.

Solution:

The fact that m is a measure easy to check by Tonelli's theorem. Also, $m(C) := \int_C e^{-x^2} dx = 0$, since Lebesgue measure of C is 0. Finally, by change of variables $u = x^2$

$$\int_0^\infty x dm = \int_0^\infty x e^{-x^2} dx = 1/2.$$