Norwegian University of Science and Technology Department of Mathematical Sciences

Problem 1. Let

$$A = \bigcap_{n=1}^{\infty} \left(\bigcup_{m=1}^{\infty} \left[\frac{1}{mn+1}, \infty \right] \right).$$

Find m(A), where m denotes the Lebesgue measure on \mathbb{R} .

Problem 2.

Does exist an open set $A \subset (0, 1)$ with the following two properties: 1. m(A) > 0; 2. A doesn't contain any binary rational?

Problem 3.

Let

$$f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} I_{[m^2, m^2 + 3^{-(m+n)}]}(x).$$

a. Prove that f is Lebesgue measurable.

b. Find the Lebesgue integral

$$\int_{\mathbb{R}} f(x) dx.$$

Problem 4. a. Find the following limit

$$\lim_{n \to \infty} \int_1^\infty (\log x)^n e^{-x} dx.$$

b. Prove that the function

$$f(t) = \int_{1}^{\infty} e^{-x^{3}} \cos xt \, dx$$

is continuous in each point $t \in \mathbb{R}$.

c. Find the following limit

$$\lim_{n \to \infty} \int_0^{n^{2/3}} \left(\log(1 + x/n) + \log(1 - x/n) \right) \, dx.$$

Hint: First prove that corresponding functions are measurable.

Problem 5. Let

$$f_n(x) = \left(\log(1 + x/n) + \log(1 - x/n)\right) I_{[0,n/2]}(x).$$

a. Find the function g(x) such that $\lim_{n\to\infty} f_n(x) = g(x)$ for all $x \in \mathbb{R}$.

Page 1 of 2

b. Determine if $f_n \to g$ uniformly.

c. Determine if $f_n \to g$ in L_1 or in measure.

Problem 6.

Let $(\mathbb{R}, \mathcal{B})$ be a measurable space, where \mathcal{B} is the Borel σ -algebra. a. Prove that $m : \mathcal{B} \to [0, +\infty)$ that given by

$$m(A) := \int_A e^{-x^2} dx$$

is a measure on \mathcal{B} . Find m(C), where C is the Cantor set. b. Compute

$$\int_0^\infty x dm.$$

Try to find the answer in a nice form.