Norwegian University of Science and Technology
Department of Mathematical Sciences
Problem 1. Let

$$
A=\bigcap_{n=1}^{\infty}\left(\bigcup_{m=1}^{\infty}\left[\frac{1}{m n+1}, \infty\right)\right)
$$

Find $m(A)$, where m denotes the Lebesgue measure on \mathbb{R}.

Problem 2.

Does exist an open set $A \subset(0,1)$ with the following two properties:

1. $m(A)>0$;
2. A doesn't contain any binary rational?

Problem 3.

Let

$$
f(x)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} I_{\left[m^{2}, m^{2}+3^{-(m+n)]}\right.}(x) .
$$

a. Prove that f is Lebesgue measurable.
b. Find the Lebesgue integral

$$
\int_{\mathbb{R}} f(x) d x .
$$

Problem 4. a. Find the following limit

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty}(\log x)^{n} e^{-x} d x
$$

b. Prove that the function

$$
f(t)=\int_{1}^{\infty} e^{-x^{3}} \cos x t d x
$$

is continuous in each point $t \in \mathbb{R}$.
c. Find the following limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{n^{2 / 3}}(\log (1+x / n)+\log (1-x / n)) d x
$$

Hint: First prove that corresponding functions are measurable.

Problem 5. Let

$$
f_{n}(x)=(\log (1+x / n)+\log (1-x / n)) I_{[0, n / 2]}(x) .
$$

a. Find the function $g(x)$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=g(x)$ for all $x \in \mathbb{R}$.
b. Determine if $f_{n} \rightarrow g$ uniformly.
c. Determine if $f_{n} \rightarrow g$ in L_{1} or in measure.

Problem 6.

Let $(\mathbb{R}, \mathcal{B})$ be a measurable space, where \mathcal{B} is the Borel σ-algebra.
a. Prove that $m: \mathcal{B} \rightarrow[0,+\infty)$ that given by

$$
m(A):=\int_{A} e^{-x^{2}} d x
$$

is a measure on \mathcal{B}. Find $m(C)$, where C is the Cantor set.
b. Compute

$$
\int_{0}^{\infty} x d m
$$

Try to find the answer in a nice form.

