

Department of Mathematical Sciences

Examination paper for **TMA4225 Foundations of Analysis**

Academic contact during examination: Andrii Bondarenko

Phone: 46341811

Examination date: 21 December, 2021

Examination time (from–to): 09:00–13:00

Permitted examination support material: You need nothing but a pen/pencil, your head and a good mood!

Other information:

The exam contains 12 questions. Each solution will be graded as *rudimentary* (F), *acceptable* (D), *good* (C) or *excellent* (A). Five acceptable solutions guarantee an E; seven acceptable with at least one good a D; seven acceptable with at least five good a C; nine good with at least two excellent a B; nine good with at least seven excellent an A. These are guaranteed limits. Beyond that, the grade is based on the total achievement. Good luck!

Language: English **Number of pages:** 4 **Number of pages enclosed:** 0

Checked by:

Date Signature

Problem 1. Find

$$
m(\bigcap_{n=1}^{\infty} [\log n, \infty)),
$$

where *m* denotes the Lebesgue measure on R. Solution: Since

$$
\bigcap_{n=1}^{\infty} [\log n, \infty) = \emptyset
$$

then is has measure 0.

Problem 2. Find a Borel measurable set $E \subset \mathbb{R}$ that satisfies simultaneously the following conditions:

- 1. *E* is uncountable,
- 2. *E* has Lebesgue measure 0,
- 3. *E* is dense in R.

Solution: One can take $E = C \cup Q$, where *C* is a Cantor set.

Problem 3 ∗ **.** For a set $A \subset \mathbb{R}$ denote

$$
A + A := \{ x + y | x, y \in A \}.
$$

For example, if $A = \{1, 2\}$, then $A + A = \{2, 3, 4\}$. Find a set *A* of Lebesgue measure 0 such that $A + A = \mathbb{R}$.

Hint: One can take $A = C + \mathbb{Z}$ and then use the fact that $[0, 1] \subset C + C$.

Problem 4.

Let

$$
f(x) = \sum_{n=1}^{\infty} I_{[0, \frac{1}{n(n+1)}]}(x).
$$

a. Prove that *f* is unsigned measurable.

b. Find the Lebesgue integral

$$
\int_{\mathbb{R}} f(x) dx.
$$

c. Find the smallest $p > 1$ such that $f \notin L_p(\mathbb{R})$. Give the arguments.

Solution:a. *f* is unsigned measurable because it is pointwise limit of a sequence of unsigned simple functions

$$
f(x) = \lim_{k \to \infty} \sum_{n=1}^{k} I_{[0, \frac{1}{n(n+1)}]}(x).
$$

b. By Tonelli's theorem

$$
\int_{\mathbb{R}} f(x)dx = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{M \to \infty} \sum_{n=1}^{M} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{M \to \infty} 1 - 1/(M+1) = 1.
$$

c. Answer $p = 2$. Clearly,

$$
f(x) = \begin{cases} 0, & x < 0, \\ \infty, & x = 0, \\ n, & x \in \left(\frac{1}{(n+1)(n+2)}, \frac{1}{n(n+1)}\right], n \in \mathbb{N}, \\ 0, & x > 1/2. \end{cases}
$$

Therefore,

$$
\int_{\mathbb{R}} |f(x)|^p dx = \sum_{n=1}^{\infty} \frac{2n^p}{n(n+1)(n+2)}.
$$

The last series is convergent for $p < 2$ and divergent for $p \geq 2$ because

$$
\sum_{n=1}^\infty \frac{1}{n^q}
$$

is convergent only for $q > 1$.

Problem 5. Find the following limits

a.

$$
\lim_{n \to \infty} \int_0^\infty n x e^{-nx} dx.
$$

b.

$$
\lim_{t \to 0} \int_{\mathbb{R}} \frac{\cos xt}{x^2 - 2x + 2} dx.
$$

$$
\lim_{n \to \infty} \int_0^2 x^n (2 - x)^n dx.
$$

c.

Hint: First prove that corresponding functions are measurable for each $n \in \mathbb{N}$.

Solution: It is easy to check that that all the functions are continuous and therefore measurable.

a. By linear change of variables $y = nx$ we get that for eac $n \in \mathbb{N}$

$$
\int_0^\infty nxe^{-nx}dx = \frac{1}{n}\int_0^\infty nxe^{-nx}dnx = \frac{1}{n}\int_0^\infty ye^{-y}dy.
$$

It is easy to show now that $ye^{-y} \in L_1[0,\infty]$ since it is continuous bounded and also

$$
\lim_{y \to \infty} \frac{y e^{-y}}{1/y^2} = 0.
$$

Therefore

$$
\lim_{n \to \infty} \int_0^\infty n x e^{-nx} dx = 0.
$$

b. Take any sequence t_n such that $\lim_{n\to\infty} t_n = 0$ and denote

$$
f_n(x) = \frac{\cos xt_n}{x^2 - 2x + 2}.
$$

Since $|f_n(x)| \leq h(x)$ for all $x \in \mathbb{R}$, where

$$
h(x) = \frac{1}{x^2 - 2x + 2},
$$

and $h \in L_1(\mathbb{R})$, we get by Dominated Convergence Theorem that

$$
\lim_{n \to \infty} \int_{\mathbb{R}} \frac{\cos xt_n}{x^2 - 2x + 2} dx = \int_{\mathbb{R}} \lim_{n \to \infty} \frac{\cos xt_n}{x^2 - 2x + 2} dx = \int_{\mathbb{R}} \frac{1}{x^2 - 2x + 2} dx = \pi.
$$

The last identity can be easily obtained using Riemann integral. Since t_n was arbitrary this implies that

$$
\lim_{t \to 0} \int_{\mathbb{R}} \frac{\cos xt}{x^2 - 2x + 2} dx = \pi.
$$

c. Denote $f_n(x) := x^n(2-x)^n I_{[0,2]}$. First it is clear that $0 \le x(2-x) \le 1$ for all $x \in [0,2]$ and therefore $|f_n(x)| \leq I_{[0,2]}(x)$ for $x \in \mathbb{R}$. Also,

$$
\lim_{n \to \infty} f_n(x) = \begin{cases} 0, & x \neq 1, \\ 1, & x = 1. \end{cases}
$$

Finally by DCT

$$
\lim_{n \to \infty} \int_0^2 x^n (2 - x)^n dx = \int_0^2 \lim_{n \to \infty} f_n(x) dx = 0.
$$

Problem 6. Let

$$
f_n(x) = nxe^{-nx}I_{[0,\infty)}(x).
$$

a. Find the function $g(x)$ such that $\lim_{n\to\infty} f_n(x) = g(x)$ for all $x \in \mathbb{R}$.

b. Determine if $f_n \to g$ uniformly or almost uniformly.

c. Determine if $f_n \to g$ in L_1 or in measure.

Solution: a. Clearly $g(x) = 0$ as it is easy to check both for $x > 0$ and $x \leq 0$. b. Since for each $n \in \mathbb{N}$

$$
\sup_{x \in \mathbb{R}} |f_n(x) - g(x)| \ge |f_n(1/n) - g(1/n)| = 1/e,
$$

 $f_n \nightharpoonup g$ uniformly. Now we will check that for every $\varepsilon > 0$

$$
\sup_{x \in \mathbb{R} \setminus [0,\varepsilon]} |f_n(x) - g(x)| \to 0,
$$

as $n \to \infty$, which will imply almost uniform convergence. Clearly,

$$
\sup_{x \in \mathbb{R} \setminus [0,\varepsilon]} |f_n(x) - g(x)| = \sup_{x \in [\varepsilon,\infty]} x n e^{-nx} = \sup_{y \in [\varepsilon n,\infty]} y e^{-y} = \varepsilon n e^{-\varepsilon n}
$$

for $n > 1/\varepsilon$. Here we use the fact that function ye^{-y} is decreasing on $[1, \infty]$, which is easy to check by taking derivative. c. Since for each $n \in \mathbb{N}$

$$
\lim_{n \to \infty} \int_{\mathbb{R}} |f_n(x) - g(x)| dx = \lim_{n \to \infty} \int_0^{\infty} n x e^{-nx} dx = 0,
$$

by Problem 5.a. Hence $f_n \to 0$ in L_1 and therefore in measure.