Solutions

Problem 1.

a. Prove that any one point subset $\{x\}$ of \mathbb{R} is a countable intersection of open sets $\left(G_{\delta}\right.$ set).
b. Let

$$
A=\bigcup_{n=1}^{\infty}\left[n, n+\frac{1}{n^{2}+n}\right] .
$$

Prove that A is a G_{δ} set. Find $m(A)$ the Lebesgue measure of A.

Solution: a. For any $x \in \mathbb{R}$ we have $\{x\}=\cap_{n=1}^{\infty}(x-1 / n, x+1 / n)$. Therefore $\{x\}$ is a G_{δ} set.
b. Similarly

$$
A=\bigcap_{m=1}^{\infty} A_{m},
$$

where

$$
A_{m}=\bigcup_{n=1}^{\infty}\left(n-\frac{1}{m}, n+\frac{1}{n^{2}+n}+\frac{1}{m}\right) .
$$

Since the segments

$$
\left[n, n+\frac{1}{n^{2}+n}\right], \quad n \in \mathbb{N}
$$

are pairwise disjoint we then have that

$$
m(A)=\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1 .
$$

Problem 2.

a. Give definition of an unsigned measurable function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$.
b. Prove that the function

$$
f(x)=\sum_{n=1}^{\infty} \frac{x}{n^{2}+1} I_{[n, n+1]}(x)
$$

is measurable. Here $I_{B}(x)$ stands for the indicator function of a set $B \subset \mathbb{R}$.
c. Find the Lebesgue integral

$$
\int_{\mathbb{R}} f(x) d x .
$$

d. Prove that an unsigned function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$that takes only rational values is measurable if and only if for each $q \in \mathbb{Q}$, the preimage $f^{-1}(\{q\})$ is a measurable set in \mathbb{R}.

Solution: a. An unsigned function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$is measurable if and only if there exist a sequence of unsigned simple functions $f_{n}(x)$ such that

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

for all $x \in \mathbb{R}$.
b. Since f has countable number of discontinuity points (\mathbb{N}) then f is measurable.
c. Consider the following sequence of simple functions

$$
f_{m}(x)=\sum_{n=1}^{m} \frac{n}{n^{2}+1} I_{[n, n+1]}(x) .
$$

It is clear that $f_{m}(x) \leq f(x)$ for all $x \in \mathbb{R}$ and $m \in \mathbb{N}$. Therefore by the definition of Lebesgue integral

$$
\int_{\mathbb{R}} f(x) d x \geq \operatorname{Simp} \int_{\mathbb{R}} f_{m}(x) d x=\sum_{n=1}^{m} \frac{n}{n^{2}+1}
$$

for all $m \in \mathbb{N}$. Finally, since the series

$$
\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}
$$

is divergent we obtain that

$$
\int_{\mathbb{R}} f(x) d x=+\infty
$$

d. Assume that f is measurable. Then for each $q \in \mathbb{Q}, f^{-1}(\{q\})$ is measurable say as a preimage of a closed set (see Lemma 1.3.9 from Tao's book). On the other hand, if $f^{-1}(\{q\})$ are measurable for all $q \in \mathbb{Q}$, then for each $\lambda \in \mathbb{R}$

$$
f^{-1}((\lambda,+\infty))=\cup_{q>\lambda} f^{-1}(\{q\})
$$

is measurable as a countable union of measurable set. Then we get the statement again by Lemma 1.3.9.

Problem 3. Let (X, \mathcal{B}, μ) be a measure space and let $f: X \rightarrow \mathbb{R}$ be an absolutely integrable function.
a. For every $n \geq 1$ define a set

$$
E_{n}:=\left\{x \in X:|f(x)| \geq n^{3 / 2}\right\} .
$$

Prove that

$$
\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty
$$

b. Denote similarly

$$
B_{n}:=\{x \in X:|f(x)| \geq n\} .
$$

Do we always have that

$$
\sum_{n=1}^{\infty} \mu\left(B_{n}\right)<\infty ?
$$

Solution: a. Since f is absolutely integrable then there exist $M>0$ such that

$$
\int_{X}|f| d \mu<M
$$

Now by Markov's inequality

$$
\mu\left(E_{n}\right)<n^{-3 / 2} \int_{X}|f| d \mu<M n^{-3 / 2}
$$

Therefore

$$
\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<M \sum_{n=1}^{\infty} n^{-3 / 2}<+\infty
$$

b. Yes we always do! But the proof is slightly more tricky.

Let $C_{n}=\{x:|f(x)| \in[n, n+1)\}$ and $a_{n}=\mu\left(C_{n}\right)$. Clearly all C_{n} are disjoint.
Now by approximation by simple functions we have that

$$
\sum_{n=1}^{\infty} n a_{n}<M
$$

On the other hand, $B_{n}=\cup_{k \geq n} C_{k}$, so

$$
\sum_{n=1}^{\infty} \mu\left(B_{n}\right)=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} a_{k}=\sum_{n=1}^{\infty} n a_{n}<M,
$$

where in the last identity we simply used double summation.
Problem 4. Find the following limits
a.

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} x^{2 n+1} e^{-n^{2} x^{2}} d x
$$

b.

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} e^{-n \sin x} d x
$$

Hint: First prove that corresponding functions are measurable.

Solution: a. All functions $f_{n}(x)=x^{2 n+1} e^{-n^{2} x^{2}}$ are measurable since they are continuous. Also, all f_{n} are absolutely integrable because

$$
|x|^{2 n+1} e^{-x^{2}}<\frac{1}{x^{2}}
$$

for all large enough x depending on n and

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x<+\infty
$$

Therefore by vertical truncation property (Exercise 1.3.10) for each fixed $n \in \mathbb{N}$

$$
\int_{\mathbb{R}} x^{2 n+1} e^{-n^{2} x^{2}} d x=\lim _{M \rightarrow \infty} \int_{-M}^{M} x^{2 n+1} e^{-n^{2} x^{2}} d x=0
$$

In the last identity we used that the Riemann integral of odd function over symmetric interval is 0 . Hence

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} x^{2 n+1} e^{-n^{2} x^{2}} d x=0
$$

b. All functions

$$
f_{n}(x)=e^{-n \sin x} I_{[0,1]}(x) .
$$

are measurable since they are continuous in every point except 0 and 1 . Now

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\left\{\begin{array}{l}
1, x=0 \\
0, x \in \mathbb{R} \backslash\{0\} .
\end{array}\right.
$$

Also,

$$
\left|f_{n}(x)\right| \leq I_{[0,1]}(x)
$$

for all $x \in \mathbb{R}$. Hence by dominated convergence theorem

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} e^{-n \sin x} d x=0
$$

Problem 5. Let

$$
f_{n}(x)=e^{-n \sin x} I_{[0,1]}(x) .
$$

a. Find the function $g(x)$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=g(x)$ for all $x \in \mathbb{R}$.
b. Determine if $f_{n} \rightarrow g$ uniformly, in L_{∞}, almost uniformly, in L_{1}, or in measure.

Solution: a. As we see from before

$$
g(x)=\left\{\begin{array}{l}
1, x=0 \\
0, x \in \mathbb{R} \backslash\{0\}
\end{array}\right.
$$

b. Since each f_{n} is continuous on $(0,1)$ then for each set B of measure 0 we have

$$
b_{n}:=\sup _{\mathbb{R} \backslash B}\left|f_{n}(x)-g(x)\right|=f_{n}(0)=1 .
$$

Therefore the sequence f_{n} doesn't converge to g in L_{∞} or uniformly. On the other hand, for each $\epsilon \in(0,1)$

$$
c_{n, \epsilon}:=\sup _{\mathbb{R} \backslash[0, \epsilon)}\left|f_{n}(x)-g(x)\right|=f_{n}(\epsilon)=e^{-n \sin \epsilon} \rightarrow 0, \quad n \rightarrow \infty
$$

Therefore the sequence f_{n} converges to g almost uniformly and hence in measure. Finally, it follows from Problem 4, part b, that f_{n} converges to g in L_{1}.

