
Solutions
Problem 1.
a. Prove that any one point subset {x} of R is a countable intersection of
open sets (Gδ set).

b. Let
A =

∞∪
n=1

[
n, n + 1

n2 + n

]
.

Prove that A is a Gδ set. Find m(A) the Lebesgue measure of A.

Solution: a. For any x ∈ R we have {x} = ∩∞
n=1(x − 1/n, x + 1/n).

Therefore {x} is a Gδ set.
b. Similarly

A =
∞∩

m=1
Am,

where
Am =

∞∪
n=1

(
n − 1

m
, n + 1

n2 + n
+ 1

m

)
.

Since the segments [
n, n + 1

n2 + n

]
, n ∈ N,

are pairwise disjoint we then have that

m(A) =
∞∑

n=1

1
n2 + n

=
∞∑

n=1

( 1
n

− 1
n + 1

)
= 1.

Problem 2.
a. Give definition of an unsigned measurable function f : R → R+.

b. Prove that the function

f(x) =
∞∑

n=1

x

n2 + 1
I[n,n+1](x)

is measurable. Here IB(x) stands for the indicator function of a set B ⊂ R.

c. Find the Lebesgue integral∫
R

f(x)dx.
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d. Prove that an unsigned function f : R → R+ that takes only rational
values is measurable if and only if for each q ∈ Q, the preimage f−1({q}) is
a measurable set in R.

Solution: a. An unsigned function f : R → R+ is measurable if and
only if there exist a sequence of unsigned simple functions fn(x) such that

f(x) = lim
n→∞

fn(x)

for all x ∈ R.
b. Since f has countable number of discontinuity points ( N ) then f is
measurable.
c. Consider the following sequence of simple functions

fm(x) =
m∑

n=1

n

n2 + 1
I[n,n+1](x).

It is clear that fm(x) ≤ f(x) for all x ∈ R and m ∈ N. Therefore by the
definition of Lebesgue integral∫

R
f(x)dx ≥ Simp

∫
R

fm(x)dx =
m∑

n=1

n

n2 + 1

for all m ∈ N. Finally, since the series
∞∑

n=1

n

n2 + 1

is divergent we obtain that ∫
R

f(x)dx = +∞.

d. Assume that f is measurable. Then for each q ∈ Q, f−1({q}) is measurable
say as a preimage of a closed set (see Lemma 1.3.9 from Tao’s book). On the
other hand, if f−1({q}) are measurable for all q ∈ Q, then for each λ ∈ R

f−1((λ, +∞)) = ∪q>λf−1({q})

is measurable as a countable union of measurable set. Then we get the
statement again by Lemma 1.3.9.
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Problem 3. Let (X, B, µ) be a measure space and let f : X → R be an
absolutely integrable function.
a. For every n ≥ 1 define a set

En := {x ∈ X : |f(x)| ≥ n3/2}.

Prove that
∞∑

n=1
µ(En) < ∞.

b. Denote similarly

Bn := {x ∈ X : |f(x)| ≥ n}.

Do we always have that
∞∑

n=1
µ(Bn) < ∞?

Solution: a. Since f is absolutely integrable then there exist M > 0
such that ∫

X
|f |dµ < M.

Now by Markov’s inequality

µ(En) < n−3/2
∫

X
|f |dµ < Mn−3/2.

Therefore
∞∑

n=1
µ(En) < M

∞∑
n=1

n−3/2 < +∞.

b. Yes we always do! But the proof is slightly more tricky.
Let Cn = {x : |f(x)| ∈ [n, n+1)} and an = µ(Cn). Clearly all Cn are disjoint.
Now by approximation by simple functions we have that

∞∑
n=1

nan < M.

On the other hand, Bn = ∪k≥nCk, so

∞∑
n=1

µ(Bn) =
∞∑

n=1

∞∑
k=n

ak =
∞∑

n=1
nan < M,
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where in the last identity we simply used double summation.
Problem 4. Find the following limits

a.
lim

n→∞

∫
R

x2n+1e−n2x2
dx.

b.
lim

n→∞

∫ 1

0
e−n sin xdx.

Hint: First prove that corresponding functions are measurable.

Solution: a. All functions fn(x) = x2n+1e−n2x2 are measurable since
they are continuous. Also, all fn are absolutely integrable because

|x|2n+1e−x2
<

1
x2

for all large enough x depending on n and∫ ∞

1

1
x2 dx < +∞.

Therefore by vertical truncation property (Exercise 1.3.10) for each fixed
n ∈ N ∫

R
x2n+1e−n2x2

dx = lim
M→∞

∫ M

−M
x2n+1e−n2x2

dx = 0.

In the last identity we used that the Riemann integral of odd function over
symmetric interval is 0. Hence

lim
n→∞

∫
R

x2n+1e−n2x2
dx = 0.

b. All functions
fn(x) = e−n sin xI[0,1](x).

are measurable since they are continuous in every point except 0 and 1. Now

lim
n→∞

fn(x) =


1, x = 0,

0, x ∈ R \ {0}.
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Also,
|fn(x)| ≤ I[0,1](x)

for all x ∈ R. Hence by dominated convergence theorem

lim
n→∞

∫ 1

0
e−n sin xdx = 0.

Problem 5. Let
fn(x) = e−n sin xI[0,1](x).

a. Find the function g(x) such that limn→∞ fn(x) = g(x) for all x ∈ R.

b. Determine if fn → g uniformly, in L∞, almost uniformly, in L1, or in
measure.

Solution: a. As we see from before

g(x) =


1, x = 0,

0, x ∈ R \ {0}.

b. Since each fn is continuous on (0, 1) then for each set B of measure 0 we
have

bn := sup
R\B

|fn(x) − g(x)| = fn(0) = 1.

Therefore the sequence fn doesn’t converge to g in L∞ or uniformly. On the
other hand, for each ϵ ∈ (0, 1)

bn := sup
R\[0,ϵ)

|fn(x) − g(x)| = fn(ϵ) = en sin ϵ → 0, n → ∞.

Therefore the sequence fn converges to g almost uniformly and hence in
measure. Finally, it follows from Problem 4, part b, that fn converges to g

in L1.
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