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Problem 1. Let p(x) be a polynomial function. Prove that the set

{x ∈ [0, 1] :
∣∣p(x)

∣∣ ≤ 0}

is Jordan measurable.
Hint: Consider the boundary of this set.

Is the same true for continuous functions? How about Lebesgue
measurability?

Problem 2. Let (X,B, µ) be a measure space, let f : X → R be an
absolutely integrable function and let M and m be two real numbers.

a) Prove that if f(x) ≤M for a.e. x ∈ X, then∫
X

f dµ ≤M · µ(X).

b) Prove that if f(x) ≥ m for a.e. x ∈ X, then∫
X

f dµ ≥ m · µ(X).

Problem 3. Let f : [a, b]→ R be a continuous function.
Prove that f is Lebesgue absolutely integrable and that∫ b

a

f(x)dx =

∫
[a,b]

f(x)dx ,

where the left hand side refers to the Riemann-Darboux integral of f ,
while the right hand side to the Lebesgue integral of f .

To make it easier, divide the problem into the following steps:

a) Explain why f “lives in a box”.

b) Prove that
∫ b

a
f(x)dx ≤

∫
[a,b]

f(x)dx by using approximations by

step / simple functions from below.

c) Prove that
∫ b

a
f(x)dx ≥

∫
[a,b]

f(x)dx by using approximations by

step / simple functions from above.
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Problem 4. Compute the following limit

lim
n→∞

∫ 1

0

nx2 sin

(
1

nx

)
dx .

Hint: It helps to remember that

lim
t→0

sin t

t
= 1 .

Problem 5. Compute the limit

lim
n→∞

∫ 1

0

sin
(x
n

)
· lnx dx .

To make it easier, we may divide the problem into:

a) Prove that the function g(x) := lnx is absolutely integrable on [0, 1].
b) For every n ≥ 1 consider the function fn(x) := sin

(
x
n

)
· lnx.

Explain why these functions are Lebesgue measurable on [0, 1].
c) Compute the pointwise limit of this sequence of functions and then

apply the appropriate convergence theorem.

Problem 6. Let f : R→ R be an absolutely integrable function, let a
be a fixed real number and define the function

F (x) :=

∫
[a,x]

f(t) dt .

Prove that F is continuous everywhere.

Hint: Use the dominated convergence theorem.

Problem 7. Let (X,B, µ) be a measure space and let f1, f2, . . . : X →
[0,∞] be a sequence of measurable functions. Prove that if

∞∑
n=1

∫
X

fn dµ <∞ ,

then

lim
n→∞

fn(x) = 0 for µ a.e. x ∈ X.

Hint: Use Tonelli’s convergence theorem.
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Problem 8. Let (X,B, µ) be a measure space and let f : X → R be
an absolutely integrable function. For every n ≥ 1 define the set

En := {x ∈ X :
∣∣f(x)

∣∣ ≥ n2} .
Prove that

∞∑
n=1

µ(En) <∞.

Hint: Use Markov’s inequality.

Problem 9. Let f : R→ R be an absolutely integrable function. Prove
that for all t ∈ R we have∫

R
f(x+ t) dx =

∫
R
f(x) dx .

Hint: Consider first the case when f = 1E is an indicator function
(you need to apply the translation invariance of the Lebesgue measure,
homework problem 5.1). Then let f be a simple function. After that
let f be non-negative and approximate it by simple functions. Finally,
split f into its positive and negative parts.

Problem 10. Let f : R→ [0,∞) be a measurable function and let

A := {(x, y) ∈ R2 : x ∈ R and 0 < y < f(x)}
be the region under the graph of f .

Prove that A is a Lebesgue measurable set in R2 and that its measure
is the Lebesgue integral of f , that is

m(A) =

∫
R
f(x) dx.

Hint: First verify these statements when f is an indicator function:
f = 1E, with E Lebesgue measurable in R. Then do it for a simple
function. Finally, for the general case, consider an approximation by
an increasing sequence of simple functions and apply the monotone
convergence theorem.

Problem 11. Let (X,B) be a measurable space. Let µ1 and µ2 be two
measures on (X,B) and define µ := µ1 + µ2. More precisely, for every
A ∈ B, let

µ(A) := µ1(A) + µ2(A) .

a) Prove that µ is a measure on (X,B).
b) Prove that for every measurable function f : X → [0,∞],∫

X

f dµ =

∫
X

f dµ1 +

∫
X

f dµ2 .


