REVIEW PROBLEMS
 TMA4225-FOUNDATIONS OF ANALYSIS-FALL 2015

Problem 1. Let $p(x)$ be a polynomial function. Prove that the set

$$
\{x \in[0,1]:|p(x)| \leq 0\}
$$

is Jordan measurable.
Hint: Consider the boundary of this set.
Is the same true for continuous functions? How about Lebesgue measurability?

Problem 2. Let (X, \mathcal{B}, μ) be a measure space, let $f: X \rightarrow \mathbb{R}$ be an absolutely integrable function and let M and m be two real numbers.
a) Prove that if $f(x) \leq M$ for a.e. $x \in X$, then

$$
\int_{X} f d \mu \leq M \cdot \mu(X)
$$

b) Prove that if $f(x) \geq m$ for a.e. $x \in X$, then

$$
\int_{X} f d \mu \geq m \cdot \mu(X)
$$

Problem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function.
Prove that f is Lebesgue absolutely integrable and that

$$
\int_{a}^{b} f(x) d x=\int_{[a, b]} f(x) d x
$$

where the left hand side refers to the Riemann-Darboux integral of f, while the right hand side to the Lebesgue integral of f.

To make it easier, divide the problem into the following steps:
a) Explain why f "lives in a box".
b) Prove that $\int_{a}^{b} f(x) d x \leq \int_{[a, b]} f(x) d x$ by using approximations by step / simple functions from below.
c) Prove that $\int_{a}^{b} f(x) d x \geq \int_{[a, b]} f(x) d x$ by using approximations by step / simple functions from above.

Problem 4. Compute the following limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n x^{2} \sin \left(\frac{1}{n x}\right) d x
$$

Hint: It helps to remember that

$$
\lim _{t \rightarrow 0} \frac{\sin t}{t}=1
$$

Problem 5. Compute the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \sin \left(\frac{x}{n}\right) \cdot \ln x d x
$$

To make it easier, we may divide the problem into:
a) Prove that the function $g(x):=\ln x$ is absolutely integrable on $[0,1]$.
b) For every $n \geq 1$ consider the function $f_{n}(x):=\sin \left(\frac{x}{n}\right) \cdot \ln x$.

Explain why these functions are Lebesgue measurable on $[0,1]$.
c) Compute the pointwise limit of this sequence of functions and then apply the appropriate convergence theorem.

Problem 6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an absolutely integrable function, let a be a fixed real number and define the function

$$
F(x):=\int_{[a, x]} f(t) d t
$$

Prove that F is continuous everywhere.
Hint: Use the dominated convergence theorem.

Problem 7. Let (X, \mathcal{B}, μ) be a measure space and let $f_{1}, f_{2}, \ldots: X \rightarrow$ $[0, \infty]$ be a sequence of measurable functions. Prove that if

$$
\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu<\infty
$$

then

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0 \quad \text { for } \mu \text { a.e. } x \in X
$$

Hint: Use Tonelli's convergence theorem.

Problem 8. Let (X, \mathcal{B}, μ) be a measure space and let $f: X \rightarrow \mathbb{R}$ be an absolutely integrable function. For every $n \geq 1$ define the set

$$
E_{n}:=\left\{x \in X:|f(x)| \geq n^{2}\right\}
$$

Prove that

$$
\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty
$$

Hint: Use Markov's inequality.
Problem 9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an absolutely integrable function. Prove that for all $t \in \mathbb{R}$ we have

$$
\int_{\mathbb{R}} f(x+t) d x=\int_{\mathbb{R}} f(x) d x
$$

Hint: Consider first the case when $f=\mathbf{1}_{E}$ is an indicator function (you need to apply the translation invariance of the Lebesgue measure, homework problem 5.1). Then let f be a simple function. After that let f be non-negative and approximate it by simple functions. Finally, split f into its positive and negative parts.
Problem 10. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a measurable function and let

$$
A:=\left\{(x, y) \in \mathbb{R}^{2}: x \in \mathbb{R} \text { and } 0<y<f(x)\right\}
$$

be the region under the graph of f.
Prove that A is a Lebesgue measurable set in \mathbb{R}^{2} and that its measure is the Lebesgue integral of f, that is

$$
m(A)=\int_{\mathbb{R}} f(x) d x
$$

Hint: First verify these statements when f is an indicator function: $f=\mathbf{1}_{E}$, with E Lebesgue measurable in \mathbb{R}. Then do it for a simple function. Finally, for the general case, consider an approximation by an increasing sequence of simple functions and apply the monotone convergence theorem.
Problem 11. Let (X, \mathcal{B}) be a measurable space. Let μ_{1} and μ_{2} be two measures on (X, \mathcal{B}) and define $\mu:=\mu_{1}+\mu_{2}$. More precisely, for every $A \in \mathcal{B}$, let

$$
\mu(A):=\mu_{1}(A)+\mu_{2}(A) .
$$

a) Prove that μ is a measure on (X, \mathcal{B}).
b) Prove that for every measurable function $f: X \rightarrow[0, \infty]$,

$$
\int_{X} f d \mu=\int_{X} f d \mu_{1}+\int_{X} f d \mu_{2}
$$

