THIRD WEEK HOMEWORK ASSIGNMENT

Problem 1. Prove that the elementary measure is monotone and subadditive. In other words, show that the map $m: \mathcal{E}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ satisfies the following:
(i) For all elementary sets E and F, if $E \subset F$ then $m(E) \leq m(F)$.
(ii) For all elementary sets E and $F, m(E \cup F) \leq m(E)+m(F)$.

Explain why the same properties hold for the Jordan measure.
Problem 2. Prove that the Cantor set is Jordan measurable and that its Jordan measure is 0 .
Problem 3. Prove that if E and F are Jordan measurable sets, then $E \cap F, E \backslash F$ and $E \triangle F$ are Jordan measurable as well.
Problem 4. Prove that a bounded set $E \subset \mathbb{R}^{d}$ is Jordan measurable if and only if for all $\epsilon>0$ there is an elementary set A such that $m^{*, J}(E \triangle A)<\epsilon$.
Problem 5. Let $E \subset \mathbb{R}^{d}$ be any bounded set. Prove the following:
(a) $m^{*, J}(\bar{E})=m^{*, J}(E)$, where \bar{E} denotes the closure of E.
(b) $m_{*, J}\left(\AA^{\circ}\right)=m_{*, J}(E)$, where $\stackrel{\circ}{E}$ denotes the interior of E.
(c) E is Jordan measurable if and only if $m^{*, J}(\partial E)=0$, where ∂E denotes the boundary of E.
Hint: During the exercise section, someone made me aware of the fact that part (c) is quite tricky. The difficult part is to show that if $m^{*, J}(\partial E)=0$ then E is Jordan measurable. Here is a hint.

Since $m^{*, J}(\partial E)=0$, for every $\epsilon>0$ there is an elementary set D with $\partial E \subset D$ and $m(D)<\epsilon$. We may assume that D is an open set (why?). Then $\bar{E} \backslash D$ is compact (why?).

Note that $\bar{E} \backslash D \subset \stackrel{\circ}{E}$, and by compactness we can find an elementary set B such that

$$
\bar{E} \backslash D \subset B \subset \stackrel{\circ}{E}
$$

This implies $\bar{E} \subset B \cup D$. Since $B \cup D$ is an elementary set, we may then derive that $m^{*, J}(\bar{E}) \leq m_{*, J}(\stackrel{\circ}{E})+\epsilon$. Let $\epsilon \rightarrow 0$, then use parts (a) and (b) to conclude that E is Jordan measurable.

This is of course a rough sketch of the proof, you have many details to fill in. Try it till next week on your own, and then I will post the detailed solution.

Problem 6. Let $E:=\mathbb{Q} \cap[0,1]$. Prove the following
(a) $m_{*, J}(E)=0$.
(b) $m^{*, J}(E)=1$.

Conclude that E is not Jordan measurable.

More problems to be added after the Tuesday lecture.

